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Abstract 
Developing world microgrids often balance insufficient supply 
with growing, unpredictable demand. Deterministic and proba-
bilistic simulators exist to model these microgrids, and each 
focuses on different technical aspects.  With the addition of 
smart meters into microgrids, monitoring and control is now 
available at high granularity, which enriches microgrid planning 
and operation. This research is designing a new simulator to 
model smart microgrids with discrete probability distributions 
as supply and demand inputs. In our model, smart meters allow 
real-time power clipping for demand side management, effec-
tively smoothing the system load curve as needed. To compare 
clipping schemes for grid operation and generation mixes for 
planning, we aggregate inputs by convolution then compute 
expected energy sold and probability of avoiding power cuts. 
The simulator plots these values for different combinations of 
power clipping threshold and number of customers clipped. 

1 Introduction 
Microgrids consist of significantly different architectures and 

equipment mixes depending on a region’s infrastructure and 
development level.  Microgrids in the developing world consti-
tute a special case, where customer demand is unpredictable and 
often grows rapidly when electricity becomes available for the 
first time. Another challenge in first-access microgrids comes 
when generation has limited capacity [1] and is increasingly 
supplied by intermittent renewable sources. 

Smart meters offer the monitoring and control needed to 
meet unpredictable loads with different mixes of supply re-
sources. Smart meters on the market today have wired and wire-
less two-way communication and the ability to limit individual 
loads dynamically with power or current limits set remotely. 
Therefore smart grids need not rely on traditional hard-coded, 
binary control from simple current limiters. Smart meters allow 
automatic collection of data that is more frequent and more reli-
able, so by instrumenting each load and generator with a meter, 
a smart microgrid can empirically develop probabilistic models 
of each supply and demand node [2]. 

While tools exist for grid planning and some specifically for 
microgrid planning, many focus on topology and losses in the 
distribution grid (e.g., GridLAB-D) or on economic returns 
from the system (e.g., HOMER and the tool from [3]). Tools 
that are predominantly deterministic like HOMER have limited 
effectiveness for selecting and sizing generation technologies, 
since they take deterministic supply inputs that are fixed at each 
time step. For effectively planning a microgrid, probabilistic 
methods are needed to account for variation and uncertainty. 
Adding smart meters into a microgrid increases complexity by 
allowing loads to be individually monitored and controlled. 
Controllable demands present new variables to consider for 
planning and operation. 

For modeling smart microgrids in the developing world, a 
new toolbox is needed for both planning and operation. The 
new simulator should account for supply intermittency and de-

mand variation. It should allow for high growth in demand over 
time and load clipping when demand exceeds the available gen-
eration. To model this varying generator and consumer behav-
ior, the simulator should treat each individually controlled node 
stochastically and allow for the demand at consumer nodes to be 
attenuated. This research is developing the features described 
above in the Load Attenuating Stochastic Simulator (LASS) [2]. 

LASS takes inputs for each supply and demand node, with 
each node modeled as a probability mass function (PMF) at 
each time step. Using 1D convolution, it aggregates individual 
loads into one system load and similarly aggregates individual 
supplies into one system supply. A power capacity threshold is 
defined for each customer that agrees to their demand being 
clipped at times of low generation.  With this threshold value, 
LASS defines a clipped demand PMF for each of these custom-
ers, and by 2D convolution the aggregate clipped demand PMFs 
are calculated to account for the effect of demand before clip-
ping on the clipped result, i.e. the conditional probability is cal-
culated given unclipped demand values. The resulting aggregate 
PMFs are then used to calculate expected energy sold and the 
probability of serving all customers without power cuts. 

Section II describes some complexities of microgrids and 
simulation tools that currently exist to address those difficulties. 
Section III explains the new functionalities that smart grids offer 
in a microgrid context. Section IV gives a fuller overview of 
LASS with an example of its capabilities from a case study 
based on a rural village microgrid in Rwanda. 
2 Microgrids and Simulation Tools 

Simulation tools for microgrids have grown with the grid 
technologies themselves. Since the early 1900’s, graph tools 
like minimum spanning trees have helped lower the cost of dis-
tribution systems [4] A more difficult problem arises when lim-
ited generation capacity is likely to be surpassed by system load, 
as occurs in rural microgrids of developing countries [1]. These 
problem scenarios become more likely for installations where 
reliable, fossil-burning generators are replaced by intermittent 
renewable energy options like wind and solar. Current tools to 
address this problem are either deterministic, probabilistic, or a 
combination of the two. 

Deterministic tools that are currently available look at sys-
tems of renewable distributed generation at least primarily with 
precise computations of generation and supply for each time 
step. The simulator in [3] calculates each generator’s efficiency 
and power capacity depending on the given generation technol-
ogy and external inputs.  For each power and efficiency calcula-
tion, this tool makes assumptions about the physics of the given 
technology. For PV this simulator assumes one-dimensional 
thermal heat conduction to estimate the efficiency of a PV panel 
given the external temperature at each time step. Similarly, for 
wind turbines this simulator estimates the output power capacity 
with linear interpolation of the power curve data provided from 
the turbine manufacturer. For micro-hydro, the simulator uses 
Gordon’s model to calculate the system flow rate. These and 
other generation technologies are integrated into a single mi-
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crogrid system with a control algorithm implemented in the Ex-
cel/VBA environment. But without a probabilistic accounting 
for input variations in these generation models, even a perfect 
control strategy will suffer when the assumptions for each input 
prove imprecise.  Errors in the assumptions for each technology 
can compound when all the generation technologies are looked 
at in aggregate as a system’s instantaneous generation mix. 

The simulator in [3] uses its energy calculations to evaluate 
energy production and decide a control strategy.  After these 
stages, the simulator predicts hourly energy flows and performs 
economic analysis by calculating cost per unit of electricity for 
each generator.  Only after these stages does it perform a sto-
chastic optimization stage before recommending a final system 
configuration.  The probabilistic results do not inform grid op-
eration, though, so a different probabilistic simulator is needed 
for adaptive control. 

Several probabilistic tools available today rely on nonse-
quential Monte Carlo methods. While this approach can repre-
sent one or multiple contingencies across distributed generators 
[5], it generally cannot distinguish between probabilistic varia-
tions in behavior at the granularity of individually controlled 
loads. For this granularity, an analytical method with a PMF 
representing each load and supply provides benefits for accu-
rately and precisely predicting system load and supply varia-
tions. 

To plan for uncertainty and granularity, LASS is being de-
veloped as a stochastic simulator that does not rely on Monte 
Carlo methods. LASS accounts for variation by precisely calcu-
lating probability from PMF inputs. Each load and generator 
having their own PMF’s – independent, discretized distributions 
– provides the granularity to accurately model independent 
agents in a microgrid system. To monitor and control the power 
consumption of these agents in real time, additional hardware 
must be added into the system beyond traditional load limiting 
devices [1]. Smart meters provide this functionality and are 
therefore a key part of microgrids modeled by LASS. 
3 Smart Meters for Microgrids 

Smart meters enable monitoring of individual load consump-
tion and generator production to high precision. Sampling rates 
can be set by the meter manufacturer or grid operator, and data 
collected can be stored locally and to the cloud. With these ca-
pabilities, smart meters introduce the granularity needed to do 
stochastic simulation – to precisely account for the randomness 
inherent to a given system. As demonstrated in [1], smart meters 
are currently deployed in developing world microgrids as well 
as developed world grids. We view the microgrid as a network 
of nodes equipped with meters – each generator a supply node 
and each consumer a demand node.  Though distribution lines 
are in place for power flow, data about power generation and 
consumption are transmitted wirelessly between the nodes and a 
central gateway processor (two-way communication). Demand 
nodes sample current and power consumed at frequencies of 
multiple KHz then communicate these readings wirelessly to the 
gateway. Supply nodes each have a 3-phase meter rather than a 
standard smart meter, and the 3-phase meter senses instantane-
ous generated capacity but offers no control of the generators. 
The gateway collects and stores information from each node 
locally then routinely stores the information from all nodes in 
the cloud. 

Depending on the total supply capacity available, the gate-
way manages each demand node and commands power or cur-
rent limits that can depend on a specific customer’s classifica-
tion (high priority load vs. dispensable load, etc.).  The demand 
nodes each receive their command (whether to clip and to what 
capacity) then carry out this command by allowing, limiting, or 
entirely cutting their load’s instantaneous consumption. In this 
way the gateway actively manages the demand loads with low 

latency. The gateway stores consumption data from all demand 
nodes and bills the customers accordingly from their pre-paid 
accounts. Customers can be charged different electricity prices, 
e.g., a tier of customers that agrees to have their load clipped to 
a low threshold at the grid manager’s discretion would pay less 
per kWh than the tiers with higher thresholds or no threshold. 

 Initial tests of the smart microgrid implementation in [1] 
show highly consistent frequency (85% of samples within 0.5 
Hz of the mean). The voltage values are bimodal, since the me-
ter in their example serves one of two dedicated phases from the 
3-phase generator. Regarding voltage values, 90% are within 
2V of the average for their specific phase. These results attest 
that smart meter technology is fitting and reliable in the mi-
crogrid context. The setup in [1] has further applications in loss 
estimation for theft detection, a traditionally difficult problem.  
The system isolates losses from theft by summing power pur-
chased at a given time step, subtracting the total power generat-
ed, then subtracting system losses, e.g., distribution line losses, 
which they calculate with GridLAB-D. Power generated but still 
unaccounted for is being siphoned off but not purchased. Given 
wire length estimates, the authors of [1] foresee localizing mi-
crogrid shorts as well as tracing open-circuits caused by downed 
distribution lines. They propose a meter modification that would 
trace resistance at each node and thereby enable quick fault de-
tection without an RF carrier transmitter or multimeter. These 
many capabilities of a smart microgrid system present a rich 
environment for grid management as well as control and pricing 
schemes, but a probabilistic simulator is needed to plan such a 
system in the face of supply and demand uncertainty. 
4 Stochastic Simulator for Smart Microgrids 

LASS is a stochastic simulator built in MATLAB which as-
sumes no distribution line losses, i.e. all generator and supply 
nodes are assumed to be on a single bus. For microgrids where 
this lossless assumption could prove problematic, e.g., with 
substandard distribution lines or long distances between nodes, 
the system should be analyzed in parallel with both LASS and 
GridLAB-D, the latter for line loss calculations. The simulator 
is currently run in the MATLAB command line, but a GUI is 
being developed to generate PMF inputs automatically based on 
parameters given by the user. Example choices for defining new 
PMFs would be distribution type (binomial, Poisson, bimodal, 
etc.) and corresponding parameters (maximum, minimum, 
mean, standard deviation) plus power increment for analysis, 
power threshold for clipping tiers, and percentage of customers 
in each clipping tier. 
4.1 PMF Inputs and Notation 

For analysis with LASS, each consumer and generator in an 
existing or planned smart microgrid is characterized by a PMF 
corresponding to the node power capacity at each time step t. 
We define j as the load index (of Jl total loads) and k the gen-
erator index (of Kg total generators). On the demand side, Dj,t

q is 
the random variable corresponding to the unclipped load of cus-
tomer j of class q whose demand is defined probabilistically at 
time step t according to PDj,tq. Class c is used here for customers 
subject to clipping, and no superscript is used for unclipped 
customers in our 2-class (clipped/unclipped, single clipping 
level) example. PDj,t is the probability mass function vector cor-
responding to an unclipped individual load. For clipping de-
mand LASS defines a threshold Tt, a nonnegative power capaci-
ty value to which each customer in a single clipping tier will be 
limited when clipping is applied. Dj,t

c
 is the random variable 

corresponding to the clipped load of single customer j whose 
demand is defined probabilistically at each time step according 
to PDj,t

c, the PMF corresponding to a clipped individual load. 
Each supply node is similarly characterized by a random var-

iable, Sk,t. Sk,t corresponds to a single generator k whose gener-
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ated capacity at each time step is defined according to the PMF 
PSk,t of values PSk,t=s. A power increment value (e.g., W or kW) 
is specified for calculating expected energy sold. 
4.2 Aggregating Inputs 

St is the sum of supply random variables Sk,t and Dt the sum 
of demand random variables Dj,t. All supply PMFs PSk,t are ag-
gregated by one-dimensional convolution at each t. The result-
ing aggregate PMF PSt for each time step corresponding to the 
probability distribution of total supply. This aggregate repre-
sents a sum of all supply random variables Sk,t. All demand 
PMFs PDj,t are similarly aggregated into PMF PDt by one-
dimensional convolution. This aggregate demand PMF is used 
when total supply meets or exceeds total demand, i.e. when no 
reduction of load is needed. Demands are separated into differ-
ent payment tiers, where a given consumer’s tier is decided by 
that consumer. Each tier is defined in LASS with a set electrici-
ty price and threshold, the maximum allowed power capacity 
when clipping is employed. The tier of consumers paying the 
highest electricity price receives the amount they demand with-
out any clipping of their loads. Tier(s) paying lower electricity 
prices agree for their power to be clipped to an agreed-upon Tt 
at all t or during specific t (e.g., peak demand hours in the even-
ing or high-demand days). All combinations of tiers, clipped 
and unclipped, are then aggregated into PMFs corresponding to 
aggregated clipped demand, as shown in figure 1. LASS then 
uses the aggregate supply PMF and all aggregate demand PMFs 
to calculate the probability of avoiding power cuts (quality of 
service) and the expected energy sold by the suppliers at each t. 

 Figure 1. LASS Inputs and outputs 
4.3 Clipping Demand Nodes 

By clipping all loads in a tier to their threshold, the overall 
demand can be attenuated as needed if total capacity generated 
falls below total unclipped capacity demanded. Different num-
bers of customers are subjected to clipping depending on the 
limitations of the aggregate supply. As customers subject to 
clipping know about the clipping threshold and agree to it in 
exchange for less expensive electricity, the microgrid can meet 
its commitment to customers by providing less power to those in 
clipped tiers and using the power saved to supply demand nodes 
of higher paying or higher priority tiers (e.g., hospitals and se-
curity lights). 
4.4 Case Study of Rwandan Village Microgrid 

The initial case study for LASS is a theoretical microgrid for 
rural Rwanda presented in [2]. This simulation models standard 
operation rather than emergency or overhaul scenarios. The case 

study therefore ignores the chance of demand spikes or of sup-
ply breakdown and maintenance. Supply nodes include a solar 
PV array, a micro-hydro plant, and a diesel generator (total sup-
ply count Kg=3).  The solar PV generation is modeled as ramp-
ing up to a maximum value depending on the hour of day and 
producing no power at night.  At midday the PV array produces 
a maximum output of 3.5 kW in the absence of cloud cover. The 
micro-hydro plant is modeled as a binomial distribution about a 
mean value (the nominal or rated output of the plant) with 15 
kW maximum output. The diesel generator is modeled as a 5 
kW capacity input, modeled as constant given that generator 
failures are not being analyzed in this example. The aggregate 
supply is shown in figure 2. 

Figure 2. Aggregate supply as shaded PMFs 

 Figure 3. PMFs of aggregate demand (houses and hospital) 
Demand nodes are a hospital and 100 households (total load 

count Jl=101).  The hospital is deemed high priority and its de-
mand is provided unclipped whenever possible.  Hospital de-
mand varies from 9 to 10 kW and is modeled as binomially dis-
tributed. Household demand is similarly binomially distributed 
based on published home load profiles [2]. Each household’s 
demand varies from 0 to 250W given the low consumption of 
lights and cell phone charging that constitute the majority of 
loads in a microgrid of rural Rwanda. The 250W maximum 
consumption level was benchmarked from solar home kits that 
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are popular in the region, as discussed in [2]. The households 
are split into clipped and unclipped tiers, the latter choosing to 
pay more for electricity for a higher level of service.  Alternate-
ly, the unclipped households could represent nodes with tradi-
tional breakers but no smart meters.  Clipped households are 
considered the lower tier and given last priority in this scenario, 
so they receive their full unclipped demand only when aggre-
gate supply is high enough to supply all their demands plus that 
of the hospital and unclipped households. The aggregate de-
mand PMFs are shown in figure 3. Peak demand before clipping 
far exceeds peak supply (figure 2) and occurs on weekday eve-
nings when household consumption peaks.  

When supply is insufficient to meet all demand, lower tier 
households are clipped to a threshold capacity of 50W until a 
future time step when aggregate supply is sufficient. In other 
words, the threshold set for low tier households under dynamic 
clipping is Tt=50W for all t. The 50W threshold was chosen to 
meet home lighting and cell phone charging needs in Rwanda, 
as described in [2]. The high tier (hospital and unclipped hous-
es) has no power threshold since these loads are given priority 
to receive their full demand. If total supply cannot meet the re-
duced demand even after low tier loads have been cut, both tiers 
experience a power cut for that t. A well-equipped hospital 
would have its own backup generator for emergency scenarios, 
but because a node-specific backup supply like this would never 
feed into the rest of the microgrid we don’t include such a gen-
erator in the case study. 

Each time step t corresponds to one hour, and a typical week 
was analyzed with standard operation at all nodes – no emer-
gency scenarios.  Two days are focused on in [2], a typical 
weekday and a typical weekend day (Saturday). 

Figure 4. Prob. of avoiding a power cut with clipping varied 
4.5 Case Study Simulation Results 

As shown in figure 4, certain high-demand hours (especially 
weekday evenings) are essentially certain to experience power 
cuts in the absence of clipping. At such times when demand 
exceeds supply, the level of clipping must be carefully chosen to 
sell the full amount of electricity being generated. Figure 5 
shows how expected energy sold grows with the percentage of 
customers clipped up to a certain tipping point (e.g., 75% for a 
weekday evening in the 2-day plots).  This tipping point is time 
dependent and represents the percentage of customers clipped 
above which customers are being unnecessarily clipped and 
available power is not being sold to customers. Clipping fewer 
than this percentage of customers means risking a power cut 
when the total demand cannot be met. 

Because microgrid income increases with energy sold, the 
percentage of clipping employed at each t affects both the prob-
ability of power cuts (the measure of quality of service used in 
[2]) and the gross income generated. In this way grid operation 
can be improved with a probabilistic simulator.  Grid planning 
can also be improved by choosing generation size and type 
(e.g., base load plants like hydro and diesel generators) after 
seeing the expected value of aggregate demand (figure 3). 

Figure 5. Expected energy sold with clipping varied 
5 Conclusions 

This paper presents an overview of microgrids in the devel-
oping world and the new functionalities introduced by smart 
meters.  The smart meter and microgrid system in [1] provide an 
illustrative example.  Given the capabilities of a smart mi-
crogrid, a probabilistic simulator can be used to account for 
supply and demand variation in microgrid planning and opera-
tion. LASS is the tool proposed for this purpose in [2], and its 
capabilities are explored in a case study based on a Rwandan 
village.  The case study finds room for economic and quality-of-
service benefits if smart meters were operated to clip consumer 
loads to different extents in cases of limited and variable gen-
eration capacity.  Both the expected energy sold and the proba-
bility of avoiding blackouts can be increased by using a proba-
bilistic simulator to constantly monitor supply and demand 
while matching demand side management levels to a dynamic 
generation mix. LASS provides insights for both microgrid 
planning and operation. 
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