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SUMMARY 

 

Water quality monitoring and search for environment friendly energy sources is 

becoming two of the most popular engineering research topics as we better understand 

the limits of our planet. In this thesis, first an optimal design methodology for water 

quality monitoring networks in river systems is developed. Next, a data interpretation 

approach is proposed to identify pollution source locations utilizing the water quality 

measurements supplied by the monitoring network. As the third topic, the thesis 

introduces an optimal design technique for energy recovery systems in water distribution 

networks. 

 

In the first part of this thesis, an optimization algorithm is developed for the water quality 

monitoring system. In this process, the best monitoring locations are determined by 

utilizing the outcomes of a simulation model. The results of the simulation model is an 

essential component of this approach since they incorporate the unsteady and stochastic 

nature of hydrodynamics and the contaminant fate and transport processes in rivers into 

the optimization model. In this approach, the ideal monitoring locations are determined 

through a multi-objective optimization technique. One of the objectives of the monitoring 

system is specified as the early detection of the contaminants and the other as the 

reliability of the monitoring network. The methodology developed was first applied to a 

simple hypothetical river system to demonstrate the importance of the unsteady 

hydrological properties of the watershed on the optimal locations of the monitoring 
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stations. Then, it is tested on a realistic river system. The results show that the design 

technique developed can be effectively used for the optimal design of monitoring 

networks in river systems.  

 

In the second part of the study, a methodology for rapid identification of contaminant 

source locations is introduced. Since this is an ill posed problem which has non-unique 

solutions, a classification routine which correlates candidate spill locations with the 

measurements at the water quality monitoring stations is developed. For this purpose, the 

breakthrough curve of a contaminant measured at monitoring site is parameterized using 

its statistical moments. Then, a large number of spill scenarios are simulated for the 

training of the monitoring system. After the training process, the method is ready for 

sequential elimination of the candidate locations which leads to the identification of spill 

location for a breakthrough curve observed at the monitoring station. The model 

developed is applied to real river system and the results show that this technique can be a 

reliable starting point for the contaminant source investigation projects. 

 

The third part of the thesis is devoted to renewable energy production from water 

distribution systems. The main idea behind this study is to harvest as much available 

excess energy as possible by utilizing micro turbines. The energy production at these 

turbines is constrained by the minimum pressure limit set by the management. Moreover, 

the unsteady nature of the flow in the network results in variations in the available excess 

energy. These aspects of the water distribution systems necessitate operation schedules 



xvii 
 

for the micro turbines. In this study, a simulation-optimization method is developed 

which maximizes the energy recovered at the micro turbine(s). This simulation-

optimization model is based on Genetic Algorithms (GA). A smart seeding of the GA is 

introduced to lower the computational burden. The algorithm tests several energy 

recovery system configurations which has different turbine locations and turbine types. 

Then the best configuration which has the highest energy production is selected. The 

methodology is first applied to a real pump driven network. Then, this network is 

converted into a hypothetical gravity driven system and the optimization model is tested 

on this new system. The results show that the energy recovery systems in water 

distribution networks can provide significant economic and environmental benefits and 

the methodology introduced is not only an optimal design tool but also an effective 

means of assessing the renewable energy potential in water distribution systems.
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1 CHAPTER 1  

 

INTRODUCTION 

Equation Section (Next) 

Two of the most important environmental challenges in the 21st century are to protect 

fresh water resources and to utilize renewable energy sources to lower greenhouse gas 

emissions. This study contributes to the solution of the first challenge by considering 

river systems which constitute a major component of fresh water supplies. Since the most 

important means of protecting river water quality are water quality monitoring networks, 

this study focuses on design of monitoring networks and interpretation of data supplied 

by the monitoring network to identify pollution source locations. The solution of the 

second challenge depends on discovering new renewable energy sources and finding new 

means to harvest this energy. Recent literature demonstrates that water distribution 

systems host important amounts of clean excess energy and this study presents a 

methodology to recover this energy. This chapter discusses the motivations of this study 

and introduces the concepts utilized to contribute to the solutions of these challenges. 

 

1.1 Real-Time Water Quality Monitoring Networks for River Systems 

 

Rivers are one of the most important natural resources, which have been the primary 

fresh water supply for humans throughout history. Also rivers are habitation places for a 

large diversity of species. This vital water resource has crucial influence on the 
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economies of the countries as well. United States Environmental Protection Agency 

(USEPA) states that some of the designated uses of these water bodies in the United 

States are public water supply, aquatic life harvesting, agriculture, recreation, fish, 

shellfish and wildlife protection and propagation (USEPA 2009). Therefore, the quality 

of river waters has important impacts on public health, wildlife and economy. To restore 

and maintain the chemical, physical and biological integrity of this natural resource, in 

1972, The U.S. Congress passed The Clean Water Act (CWA) which requires states and 

other jurisdictions to assess the health of their waters and the extent to which their waters 

support water quality standards (USEPA 2009). Similar actions are taken on the other 

side of the Atlantic as well; in 2000, European Parliament passed the European Union 

Water Framework Directive (WFD) (Directive 2000/60/EC). In all these attempts for the 

protection of rivers, water quality monitoring is the key step to understand the current 

condition and to promote informed decisions on the use and management of these water 

resources.  

 

The primary purpose of a water quality monitoring system in a river network is to 

provide a system that would generate sufficient and timely information to enable the 

managers to make informed management decisions regarding the quality of life of the 

populations that are utilizing this resource. The secondary purpose of water quality 

monitoring may include issues such as monitoring the quality of the environment for the 

essential needs of the habitat, identification of pollution sources thus potential polluters, 

immediate initiation of clean-up operations after an accidental or deliberate spill, 

concerns on potential terrorism events and the use of the data collected to identify 
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stringent rules and regulations to avert the adverse effects that may be caused by the 

consequential environmental degradation, that is the Total Maximum Daily Load 

management  (TMDL). A TMDL is the total amount of pollutant that can enter a water 

body without causing it to violate a water quality standard for that pollutant. When the 

primary purposes identified above are considered as the criteria of the real-time 

monitoring network design, the design objectives can be easily identified. For the 

purposes cited above, the design objectives are the early detection time and the reliability 

of the monitoring system designed. These two criteria are essential to protect humans 

from adverse effects of exposure to harmful contaminants. Focusing on these two 

objectives, this study proposes a methodology that is based on the transient behavior of 

random contamination event or events in a river network. The proposed model is based 

on the hydrodynamics and the contaminant fate and transport characteristics of the river 

system under study. The information gathered from this analysis is used in an 

optimization model to identify the best monitoring locations in the river network in real 

time which would satisfy the two objectives identified above. 

 

1.2 Identification of Contaminant Source Locations in River Systems Using Water 

Quality Monitoring Networks 

 

Once the real-time monitoring stations are optimally located in the river system, they 

provide continuous information about the quality of the river water. This information can 

be used for long term management of the river system such as in the decision of the 



4 
 

TMDLs and in the inspection of these rules. In addition to these current applications, 

improving real time sensor technologies assign new duties to monitoring systems such as 

rapid identification of contaminant source locations. This information on the source 

location can be used for remediation purposes and for environmental forensic studies. In 

addition, source identification provides important information to be used in the health 

risk analysis of potential water pollution events in river systems. Identification of 

contaminant source location is essential for reducing the risk of exposure by preventing 

recurring pollution events as well as providing timely response to deliberate or accidental 

pollution incidents in rivers.  

 

When a pollutant enters to the stream, its concentration can be recorded at a monitoring 

station as a breakthrough curve. The question is whether this data can be used to reveal 

important information about the location of the contaminant spill. This source location 

identification problem is an ill posed problem because of the irreversible nature of the 

contaminant transformation and transport processes. This problem has been studied in 

different media such as groundwater, water distribution systems and indoor air and many 

different solution techniques are proposed such as simulation-optimization (Guan, Aral et 

al. 2006), solution of transport problem backwards in time (Bagtzoglou and Baun 2005) 

and pattern recognition (Datta and Peralta 1986) and artificial neural networks (Singh, 

Datta et al. 2004). One of the objectives of this study is to develop a methodology which 

solves this problem in complex river systems with minimum computational effort. Thus, 

a technique which can be classified into pattern recognition group is utilized to gather 
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information on the location of the pollution spill from its breakthrough curve observed at 

the monitoring stations. 

1.3 Water Distribution Systems as a Source of Renewable Energy 

 

Within the past few decades, it is understood that global warming has become one of the 

most important environmental problems affecting the future of human civilization. The 

increase in average temperature on the surface of the earth cause drastic problems in 

many environmental aspects such as global sea level rise, severe floods and droughts all 

around the globe. The future results of global warming may change the surface area of 

the land causing large migrations, reduce the amount of available clean water, cause 

problems in agriculture, and eventually bring severe economical and social crisis all 

around the world. Studies show that global warming is a result of increasing 

concentrations of greenhouse gasses in the atmosphere (IPCC 2007). The primary 

greenhouse gasses in the atmosphere are water vapor (H2O), carbon dioxide (CO2), 

nitrous oxide (N2O), methane (CH4) and ozone (O3). The sources of these gasses can be 

both natural and anthropogenic. However, rapidly increasing human activities such as 

burning of fossil fuels to produce energy dramatically increased the concentrations of 

greenhouse gasses within the past few centuries. As a result, reducing or stopping global 

warming became one of the most important challenges in the history of mankind. One of 

the solutions to this problem is utilizing renewable energy sources which do not emit 

greenhouse gasses.  
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Renewable energy is widely understood as energy recovered from the natural processes. 

Main renewable energy sources are sunlight, wind, rain, tides and geothermal heat. 

However, recently new renewable energy sources which can be considered as 

anthropogenic are being added to this list. This energy is produced inevitably during 

human activities but dissipated if it is not recovered.  The best example to this type of 

renewable energy can be found in water distribution networks. Water distribution 

networks are designed to satisfy the consumer demands at the outlet nodes. To achieve 

this goal, adequate pressures need to be maintained throughout the network. However, 

high pressures cause damage to the pipeline and increase the amount of leakage causing 

serious economic loss. Therefore pressures in the water distribution networks have upper 

and lower constraints. While the pressures lower than a minimum cause unsatisfied 

demands and pressure requirements for emergency needs such as fire protection, the 

excess pressures cause pipe damage and leakage problems. As the complexity of a water 

distribution network increase, maintaining target pressures becomes more difficult 

causing excess pressures in the network. The conventional solution to this problem is to 

install pressure reducing valves which adjust the local head loss to lower the downstream 

pressure to a set value. However, this process causes dissipation of significant amount of 

energy that can be recovered and used by the community without emission of additional 

greenhouse gases. This energy recovery is possible by utilizing micro hydroelectric 

power plants as an alternative means of pressure reduction to pressure reducing valves. A 

micro hydroelectric power plant has a capacity less than 100 kW (Monition 1984). When 

the goal is set as energy recovery from excess pressures in a water distribution system, 

then the next step is to design this energy recovery system. The design of this system is 
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an optimization problem for the decision of the number, capacities and the locations of 

hydroelectric power plants installed in the water distribution network. The objective of 

this problem can be set as the maximization of the energy produced by the energy 

recovery system and the constraints are the minimum and maximum pressures along with 

the requirement of satisfied consumer demands. In this study a methodology is developed 

for the optimal design of energy recovery systems for water distribution networks 

 

1.4 Scope of the Study 

 

This thesis is organized in six main chapters. Chapter 2 of the study provides background 

and literature on the three main problems of the study in three sections. In the first 

section, real-time water quality monitoring systems, their design criteria and 

corresponding design methodologies in river systems are reviewed. The second section 

reviews the techniques for the identification of contaminant source locations in river 

systems. In the third section of Chapter 2, past studies on the solution of excess pressure 

problem and methods proposed for energy recovery in water distribution networks are 

provided. Chapter 3 presents the solution methodology and applications of optimal design 

of real-time water quality monitoring networks. The applications are arranged in two 

main parts. In the first part, the methodology is tested in a hypothetical river system taken 

from the literature for comparison purposes and for the demonstration of the effects of 

hydrodynamics and hydraulic characteristics of the river system on the optimal solution. 

The second part of Chapter 3 presents the results of the proposed method for a natural 
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river system which is chosen as the Altamaha River in the State of Georgia, USA.  

Chapter 4 describes the methodology for the identification of contaminant source location 

by using the data provided by a real-time water quality monitoring system and 

demonstrates the application of the proposed technique in Altamaha River system. In 

Chapter 5, the optimization approach for the design of energy recovery systems for water 

distribution networks is described and the methodology is applied on the Dover 

Township water distribution system in the State of New Jersey, USA. Finally, Chapter 6 

presents a summary of findings of the thesis and concludes the study. 
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2 CHAPTER 2  

 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Sensor Technologies for Water Quality Monitoring 

Equation Section (Next) 

The primary constituent of a river monitoring system is the method of chemical or 

biological analysis which provides quantitative information about the quality of the water 

analyzed. Increasing human population and rapidly growing industry cause an increase in 

the amount and diversity of the pollutants disposed in water bodies which necessitates 

fast and cost effective analytical methods in environmental monitoring programs. For 

screening basic water quality parameters such as temperature, conductivity and pH, 

specific sensors for continuous data acquisition are available (Harmon, Ambrose et al. 

2007). However, detection of emerging contaminants such as complex organic 

compounds requires more sophisticated methods.  Traditional analytical methods such as 

chromatographic methods require conventional sample collection, transport to the 

laboratory and instrumental analysis. Therefore, although these methods provide precise 

information on the concentration of the contaminants, they are not efficient in the case of 

an accidental or deliberate spill of contaminants which necessitates a rapid response. 

Current trend in water quality monitoring is to utilize emerging technologies such as 

immunoassays and biosensors (Farre, Brix et al. 2005; Allan, Mills et al. 2006). An 

immunoassay is a biochemical test to measure the concentration of a substance observing 

the reaction of an antibody to its antigen. Immunoassays can be used for real-time 
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monitoring of several compounds such as polychlorinated biphenyls (PCBs), 

pentachlorophenol, atrazine, polynuclear aromatic hydrocarbons (PAHs) (Sadik and Van 

Emon 1996) and benzene, toluene, xylene (BTX) (Gerlach, White et al. 1997). A 

biosensor, also called an immunosensor, is a device for the detection of an analyte that 

combines a sensitive biological component with a physicochemical transducer which 

senses the interaction of the analyte with biological element and produces a 

corresponding signal providing real-time and cost effective results (Rodriguez-Mozaz, de 

Alda et al. 2005). Tschmelak, J., G. Proll, et al. (2004) showed the capability of an 

immunosensor for the detection of several contaminants such as bisphenol A, estrone, 

atrazine, isoproturon, endocrine disrupting chemicals, pesticides and several other 

organic compounds.  

 

To summarize, sensor technologies for environmental screening is a rapidly growing field 

and improvements in this field result in precise and cost effective methods for real-time 

water quality monitoring. Once these technologies are available the next question is at 

which locations in a river system we should utilize these sensors in order to maximize our 

monitoring performance. 

 

2.2 Water Quality Monitoring Network Design 

 

The first step in monitoring network design is to identify the design considerations such 

as why to monitor and expected information from the system. In other words, the 
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objectives of the monitoring network and the information expected for each objective 

should be clearly defined prior to actual technical design of the monitoring system (Steele 

1987; Harmancioglu and Alpaslan 1994). Kwiatkowski (1991) identified these objectives 

for large scale monitoring networks as detection of violations of quality standards, 

monitoring trends in the environment, providing information to develop and validate 

predictive models and monitoring ecosystem health. However, as emerging sensor 

technologies develop and new environmental threats become possible, additional 

objectives such as detection of accidental or deliberate spills become necessary (Allan, 

Mills et al. 2006).  Once these conceptual design objectives are determined, other aspects 

of the problem such as number and locations of monitoring sites, sampling frequency, 

parameter selection and data transfer can be studied (Strobl and Robillard 2008). An 

extensive review about the studies on the design of these aspects of monitoring systems 

can be found in (Dixon and Chiswell 1996). Among these activities, the determination of 

data collection points constitutes the most important step since the success or failure of 

the other steps relies on the performance achieved in this first step.  

 

The first attempt to determine optimum sampling locations came from Sharp (1971). He 

used a topological method which describes the river network in terms of stream order 

numbers and divides the watershed into sub-catchments. The division points were 

assigned as the optimum sampling locations.   One year later, Beckers, Chamberlain et al. 

(1972) developed a methodology to determine priorities of segments along a river in 

terms of probability of violations to water quality standards. Harmancioglu and Alpaslan 

(1992) utilized statistical entropy analysis to assess the spatial frequency of monitoring 
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stations using monthly observed values of 40 water quality variables. Applicability of 

genetic algorithms (Cieniawski, Eheart et al. 1995) and integer programming (Hudak, 

Loaiciga et al. 1995) were also demonstrated. Kriging method incorporated with a one 

dimensional steady-state river water quality model was proposed as another option to 

select the optimal locations of monitoring stations (Lo, Kuo et al. 1996). Dixon, Smyth et 

al. (1999) improved Sharp’s (1971) method to determine optimum sampling locations by 

using geographical information system (GIS), graph theory and simulated annealing 

algorithm. As new environmental simulation algorithms develop and computing 

capabilities improve, simulation-optimization methods became feasible. Ning and Chang 

(2004) presented a strategy to expand water quality monitoring stations in a river system 

by integrating simulation and fuzzy optimization approach. They also proposed a method 

for optimal relocation of monitoring stations to meet the long term monitoring objectives 

inspired from Kwiatkowski (1991) utilizing the same simulation algorithm with 

compromise programming (Ning and Chang 2005). Concurrently, Icaga (2005) applied a 

procedure using genetic algorithms to select optimum station combination in an existing 

monitoring network without simulation but utilizing real observations. Studies on the 

relocation and expansion of existing monitoring stations continued with Park, Choi et al 

(2006). They used observations from an existing monitoring network as their database 

and applied genetic algorithms in association with GIS to obtain the optimum design. 

Ouyang, Yu et al. (2008) proposed an optimization method for sampling locations 

considering only geometry of a river system. Their approach was to minimize the 

required cost to locate the pollutant source using genetic algorithms. Karamouz, 

Nokhandan et al. (2009) utilized entropy theory to determine redundant monitoring sites 
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in an existing monitoring network. They used a river water quality simulation model to 

generate a water quality database for their statistical entropy analysis.  

 

As a summary, several sophisticated methods have been developed to find optimal 

locations for river water quality monitoring stations since 1970’s. When data 

requirements of these methods are compared, some of these methods consider only the 

geometry of the river network, some utilize existing water quality observations and others 

are based on water quality models. Most of these water quality models are designated to 

obtain steady-state solutions simply because of the complexity of the watersheds and the 

rivers that are considered in those studies. However, as the computational capabilities of 

the hydrodynamic and transport models improve, it becomes possible to simulate 

unsteady conditions in natural and man-made systems.  

 

Today, there are examples of monitoring system designs which take into account the 

transient nature of environmental systems. Chadalavada and Datta (2008) developed a 

methodology for optimal design of a dynamic groundwater monitoring network using a 

simulation model which considers the transient flow and transport process in the aquifer. 

Guan, Aral et al. (2006) determined optimal monitoring locations for a water distribution 

system emphasizing dynamic behavior of fate and transport processes. Similar problem 

was studied by Rogers (2009) by introducing nodal importance concept to reduce the 

computational efforts. Nam (2008) have studied optimization of both stationary and 

mobile water quality monitoring systems in lakes. Recently, importance of transient 
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simulation models in river networks was demonstrated by Gevaert, Verdonck et al. 

(2009). (Rogers 2009) In this study, a methodology which considers the unsteady 

behavior of hydrodynamics, fate and transport of contaminants in river networks is 

proposed. With this consideration and advances in sensor technologies summarized in 

previous section, the performance criteria of new generation water quality monitoring 

systems are determined as early detection and reliability of the system. 

 

2.3 Identification of Contaminant Source Location 

 

The second law of thermodynamics which explains the principle of increase in entropy 

(or disorder) in natural systems and processes dictates the irreversibility of the 

contaminant transformation and transport processes. Due to this irreversible nature, 

contaminant source identification problems are always ill posed problems and they 

require special approaches such as response matrix method, simulation optimization and 

pattern recognition techniques. 

 

Gorelick, Evans et al. (1983) formulated this problem in groundwater applications as an 

optimization model using concentration response matrix technique. In the response 

matrix approach, they developed a two dimensional response matrix which describes the 

simulated concentrations at the measurement sites due to unit leaks at the candidate 

locations. The concentration at any measurement location is a liner combination of these 

unit leaks. Hence, their objective was to minimize the difference between the superposed 



15 
 

simulated concentrations and the measurements also called residuals and they utilized 

linear programming and multiple linear regression as the optimization methods. Aral and 

Guan (1996) utilized genetic algorithms  to search the groundwater pollution sources in a 

2-D homogeneous aquifer using a similar concentration response matrix. They developed 

an improved genetic algorithm to overcome the limitations of genetic algorithms in 

constrained optimization problems. Sun, Painter et al. (2006) embedded the response 

matrix technique into an iterative optimization model to identify contaminant source 

location and release history in groundwater environment. In their model they used a 

robust least square estimator which takes into account the uncertainty and they used 

branch and bound method as the optimization tool. Aral, Guan et al. (2001) formulated 

the contaminant source identification problem in groundwater as a non linear 

optimization model and they used a progressive genetic algorithm which combines an 

iterative process of simulation and genetic algorithms producing a computationally 

efficient method. Singh and Datta  (2006) utilized a linked simulation-optimization 

approach using genetic algorithms as the optimization tool. In this simulation- 

optimization technique, the objective was to minimize the difference between observed 

concentrations and simulated concentrations at the measurement locations. Guan, Aral et 

al. (2006) proposed a similar simulation-optimization method to identify the contaminant 

source locations in water distribution systems. They used reduced gradient method as the 

optimization tool in this application.  

 

Besides optimization methods, researchers have used different approaches such as the 

solution of transport problem backwards in time. Bagtzoglou and Baun (2005) used 
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Marching Jury Backward Beam equation in conjunction with discrete Fourier transform 

technique to improve computational efficiency.  However, they used an optimization 

algorithm due to ill posed nature of the inverse problem.  

 

Bayesian inference approach was another method used to overcome the difficulties of this 

ill conditioned inverse problem (Keats, Yee et al. 2007). In this method, Bayesian 

statistics was utilized to calculate the conditional probability density function of the 

source location and strength given a set of concentration measurements and a Markov 

chain Monte Carlo approach was used to generate these posterior distributions of the 

source parameters. Backward probabilistic models which estimate location and travel 

time probabilities using backward modeling were also used to determine prior location of 

pollutants in groundwater (Neupauer and Wilson 1999; Neupauer and Wilson 2001; 

Neupauer and Wilson 2004; Neupauer and Lin 2006). Similar probabilistic inverse 

models were applied to determine source locations in indoor air environments (Liu and 

Zhai 2008; Liu and Zhai 2009). 

 

Other interesting approaches to solve source identification problems were pattern 

recognition and artificial neural network applications. Pattern recognition is the 

classification of an observation as one of the finite number of patterns based on its 

features.  Datta and Peralta (1986) introduced an expert pattern recognition method to 

solve this problem in groundwater using an optimal sequential pattern classification 

algorithm. They used the expert system to decide to continue or terminate the pattern 
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recognition algorithm which utilizes dynamic programming. They associated this 

termination criterion with the risk of false classification. Later, Singh, Datta et al. (2004) 

applied artificial neural network approach to solve the problem in groundwater. They 

trained the artificial neural network with a set of data produced by a groundwater flow 

and contaminant transport model. Then, they used this trained network to identify the 

pollution sources for a given concentration observation data at measurement locations. 

Afterwards, Singh and Datta (2007) further improved this artificial neural network 

approach for partially missing concentration observation data.  

 

As a summary, the contaminant source location identification problem has received 

significant attention from the scientific community providing a diversity of solution 

approaches. Another interesting observation is that this problem is not addressed 

significantly in river systems. One example of an inverse solution in river systems came 

from Boano, Revelli et al. (2005). They assumed that source locations are known and 

applied geostatistical methods to estimate release histories of pollutants in a river reach.  

 

In this study, a methodology for identification of a contaminant source location in 

complex river systems is proposed. This approach can be classified in the set of pattern 

recognition algorithms. The methodology proposed is based on an adaptive sequential 

feature selection algorithm developed by Jiang (2008) for neural signal decoding 
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2.4 Energy Recovery from Water Distribution Systems 

 

The environmental impacts of utilization of fossil fuels as a major source of energy 

necessitate the research on renewable energy resources.  The main renewable energy 

resources are hydropower, biomass, solar, wind, geothermal and ocean energy. Among 

these resources, hydropower has an estimated total theoretical potential of 150 Exajoules 

annually (Johansson, McCormick et al. 2004). The hydroelectricity generation is a mature 

technology which is not expected to be further improved. However, small-scale 

hydropower still has potential of growth  (Johansson, McCormick et al. 2004).  

 

The term “small-scale” is most widely used for the hydroelectric power plants which has 

a capacity less that 10 MW (Paish 2002). Smaller hydropower plants can be classified 

into micro when the power is less than 100 kW and mini when it is between 100 and 5000 

kW (Monition 1984). Some of the advantages of micro hydropower plants cited by Paish 

(2002) are predictable available energy, no fuel and limited maintenance requirements, 

long lasting technology and no environmental impact.  

 

The traditional application of small-scale hydropower is to construct a small hydraulic 

structure such as a weir in a river to produce a head difference for the turbine (Yuksek 

and Kaygusuz 2006) and this traditional application still has significant potential all 

around the world (Nunes and Genta 1996; Dudhani, Sinha et al. 2006; Pokharel, Chhetri 

et al. 2008; Kanase-Patil, Saini et al. 2010).  Recent studies have shown that mini and 
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micro hydropower plants are feasible and economically viable for applications in 

municipal water distribution networks (Ramos, Covas et al. 2005; Bieri, Boillat et al. 

2010; Soffia, Miotto et al. 2010). The idea behind energy production from water 

distribution systems comes from the fact that energy dissipation devices such as pressure 

relief valves have already been used to reduce excess pressures which occur due to 

operational necessities. Therefore, most of the studies aim to recover this dissipated 

energy by a mini or micro hydropower plant. 

 

The first attempt to integrate hydropower plants in water distribution systems came from  

Afshar, Benjemaa et al. (1990). They proposed a methodology to find the optimum 

number of hydropower plants and their locations, the optimum capacities of the turbines 

to be used and optimum pipe diameters at each section of the main transmission line in 

the water supply system. They utilized dynamic programming to find the optimum 

combination of these design parameters by maximizing the annual net benefit. The 

constraints of their optimization model were upper and lower bounds for the diameters 

considered, heads for the hydropower plants and pressures allowed. Another constraint 

was satisfaction of the demands. 

 

Ramos, Covas et al. (2005), showed experimentally that pressure reducing valves and 

micro-turbines have similar behaviors for steady state flows and different activities were 

observed under transient conditions. They observed that although in some cases micro 

hydropower plants perform better in pressure regulation in other cases a mixed solution 
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of micro turbines and pressure reducing valves is recommended. They also proposed an 

optimization method to minimize pressure and the number of pressure reducing valves in 

the water distribution network. They utilized genetic algorithms to solve this optimization 

problem.  

 

In another recent study, first, pressure reducing valves were introduced in the water 

supply system at optimal locations and then these valves were substituted by micro 

hydropower plants (Giugni, Fontana et al. 2009). This study emphasized the leakage 

problem due to excess pressures in the distribution systems.  Their simulations showed 

that similar leakage reduction was achieved after the pressure reducing valves are 

replaced by micro hydro power plants. Genetic algorithms were used as the optimization 

tool.  

 

Another interesting study which demonstrates the future potential of renewable energy 

applications in water supply systems came from Vieira and Ramos (2009). In their study, 

they introduced an optimization model for the operation of a hybrid water supply system 

equipped with a pump, hydraulic turbine and a wind turbine. The optimization model to 

achieve maximum energy efficiency described the pumping operation schedule 

considering the economic benefits coming from the profit of wind energy to supply water 

pumping. The optimization algorithm developed was based on linear programming 

formulation.  
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As a summary, micro hydropower plants have significant prospective applications in 

water distribution systems. These clean energy recovery systems can be used efficiently 

for pressure regulation in water distribution systems as a replacement of pressure 

reducing valves already in use. In this study, a methodology to determine optimal 

number, location and capacity of micro hydropower plants to achieve maximum energy 

recovery is proposed. The main constraints   of the problem are defined as satisfaction of 

the consumer demands and maximum and minimum permissible pressures. 
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3 CHAPTER 3  

 

OPTIMAL DESIGN OF WATER QUALITY MONITORING NETWORKS 

Equation Section (Next) 

3.1 Introduction 

 

The components of a river monitoring network design study would include the selection 

of the water quality variables, identification of the locations of sampling stations and 

determination of the sampling frequencies. These are primary design considerations 

which may require a variety of objectives, constraints and solution methods. This study 

focuses on the optimal river water quality monitoring network design aspect of the 

overall monitoring program and proposes a novel methodology for the analysis of this 

problem. In the proposed model, the locations of sampling sites are determined such that 

the contaminant detection time is minimized for the river network while achieving 

maximum reliability for the monitoring system performance. For comparison purposes, 

the proposed method is tested on a simple network that has been studied in the literature. 

The comparative analysis of the design generated in this study and the outcome presented 

in the literature is discussed for various contamination scenarios. The results indicate that 

steady state solutions or solutions based on the geometry of the river network may not 

provide a reliable solution for the network design problem and a dynamic analysis may 

be necessary to solve this important problem. Altamaha river system in the State of 

Georgia, USA is chosen to demonstrate an application of the proposed methodology on a 
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natural river system. The results show that the proposed model can be effectively used for 

the optimal design of real-time monitoring networks in river systems. 

 

3.2 Methodology 

 

The proposed methodology is based on two important steps: (i) determination of the 

dynamic behavior of a contamination event in a river network. In this step the data that 

will be utilized in the second step is generated and stored; and (ii) determination of the 

monitoring locations based on an optimization model.  These two steps are described in 

more detail below. 

 

3.2.1 Hydrodynamic and Contaminant Fate and Transport Simulation 

 

For the hydrodynamics and contaminant fate and transport analysis, the EPA Storm 

Water Management Model (SWMM) is used. As stated in the user manual of the model  

(Rossman 2007), SWMM is a dynamic rainfall-runoff model which can be used for 

single event or long-term (continuous) simulation of runoff quantity and quality from 

primarily urban areas with possible extension to watershed analysis. Among many 

capabilities of SWMM, one of the most important objectives in this study is the handling 

of river networks of unlimited size. Also, SWMM can be used to simulate a river network 

system with a wide variety of standard closed and open conduit shapes as well as natural 
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channels. In the SWMM model, user defined external flows and water quality inputs can 

be used for a variety of watershed conditions or simple channel networks can be 

analyzed. Although the model is designed for urban areas, SWMM can be used for the 

preliminary analysis of large watersheds as discussed in this study. 

 

SWMM uses the Manning’s equation to calculate the depth of flow in all conduits and to 

calculate the flow within a conduit link SWMM employs the conservation of mass and 

momentum equations (i.e. the Saint Venant equations). Contaminant transport within a 

conduit link is performed with the assumption that each sub-reach of the conduit behaves 

as a continuously stirred tank reactor (CSTR). Since a river reach can be divided into 

several sub-reaches to improve numerical accuracy in an application, the outcome is 

again suitable for the purpose of this study. The model also performs contaminant fate 

and transport analysis based on the results of the hydrodynamic analysis for various 

contamination conditions. The software has a flexible graphics user interface and can be 

imbedded in optimization models of efficient handling of the output. 

 

3.2.2 Optimization Model 

 

In this study, the river monitoring system is designed based on two performance 

measures: (i) minimizing the average detection time of the contamination events; and, (ii) 

maximizing the reliability of the monitoring system.  Accordingly, the performance of the 

monitoring system will increase as the time between the start of a contamination event 



25 
 

and its detection time decreases and the number of potential scenarios detected increases. 

Any contamination event that leaves the river system without being detected will 

decrease the reliability of the monitoring system. These cases are penalized in the 

evaluation of the objective function to emphasize this negative impact. 

 

The river network is assumed to contain N monitoring stations. These are the candidate 

monitoring stations. If the required (desired) number of monitoring stations is specified 

as M where  M N , we may use the vector X to represent the solution vector of the 

monitoring stations denoted as,  T1 2 i MX x ,x , ...,x ,...,x , where ix  is the index of a 

monitoring station with in the set of candidate monitoring locations. For a given solution 

X, the detection time of a monitoring station n in a monitoring station set for the 

contamination scenario s, n
sd ( X ) , is defined as the time elapsed between a 

contamination event and occurrence of a concentration exceeding a predefined threshold 

at a monitoring station. The detection time of the monitoring system for the scenario s, 

 st X  is defined as the shortest time among the detection times of the monitoring 

stations for a contamination event and a penalty value of  sim s ,injt t  is assigned as the 

detection time for all non-detected scenarios as described in Equation (3.1), where simt  is 

the total simulation time and s ,injt  is the starting time of the contamination event for 

scenario s.  
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  
        

 
if scenario is detected,

if scenario is not detected.

1 2 i M
s s s s

s

sim s ,inj

min d X ,d X ,...,d X ,...,d X s
t X

t t s

 


 (3.1) 

 

Based on this definition, the average detection time of the monitoring network X,  t X , 

which represents one of the objectives, can be calculated by taking the average of  st X  

over all possible scenarios: 

    
S

s
s 1

1
t X t X

S 

   (3.2) 

 

where S is the number of all scenarios considered in the analysis.  

 

The reliability of the design X,  R X , is defined as the ratio of detected contamination 

scenarios to the total scenarios tested. Therefore, the reliability of the monitoring system, 

which is the second objective function of the optimization problem and can be calculated 

as: 

    
eNS

k
s 1 k 1e s

1 1
R X X

S N


 

 
  

 
   (3.3) 

 

where  k X is an indicator variable taking the values 0 or 1 for non-detection and 

detection events respectively and eN  is the number of contamination events in a scenario. 

The reliability equation given above is selected to consider the occurrence of multiple 

contamination events within the simulation period and the possibility of detecting only 
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some of these events.  If S is very large, it may become impossible to simulate all 

possible scenarios and consider them in the optimization problem. Then  t X  and 

 R X can be defined as the expected detection time and reliability of a randomly 

selected subset of scenarios in a statistical sense. These expected values can be estimated 

as: 

 
   
   

s

s

t X E t X

R X E R X

   
   

 (3.4) 

 

where  .E  indicates the expected value computed as: 

 
    

 : 0y p y

E Y yp y


   (3.5) 

 

where Y is a discrete random variable which takes on the values y associated with a 

probability function  p y . 

 

In this study the purpose of the monitoring system is to detect the contamination events 

as quickly as possible with the smallest failure rate. To achieve this goal, average 

detection time should be as small as possible and the reliability of the monitoring system 

should be as high as possible. Therefore, the design of a monitoring network can be 

formulated as an optimization problem that can be mathematically stated as: 
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  
  

1
X

1
X

o

f Minimize t X

f Maximize R X

s.t. M M







 (3.6) 

 
 

where oM is the predefined total number of monitoring sites.  

 

The multi-objective optimization problem described above can be solved using a 

multitude of methods. In this study we will use the genetic algorithm (GA) for large 

systems and the enumeration search approach when the example problems discussed can 

be handled with this approach within a reasonable computation time. For more 

complicated applications where multiple optimal solutions are possible we will use the 

Pareto optimal analysis. The computational procedures for the GA and Pareto analysis 

are standard procedures that can be found in the literature and will not be repeated here 

(Holland 1975; Goldberg 1989; Guan and Aral 1999). Applications of this methodology 

to the design monitoring systems in water distribution systems has been tested with 

considerable success (Guan, Aral et al. 2006; Guan, Aral et al. 2006; Nam and Aral 2007; 

Nam and Aral 2007; Rogers, Guan et al. 2007). 
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3.3 Applications 

 

In this section the application of the proposed methodology for two different river 

systems are demonstrated in separate sections. In the first section the proposed 

methodology is tested for several cases on a simple hypothetical river network. The 

primary purpose of this work is to: (i) develop the basic methodology used in this 

analysis; (ii) compare the optimization solution with other studies from the literature to 

verify the outcome; and , (iii) understand the effects of the hydraulic parameters and 

watershed characteristics on the optimal solution. In the second section, the proposed 

methodology is applied to the Altamaha River system which is a hydrologically and 

hydrodynamically much more complex river system and the effect of the more complex 

scenarios on the optimal outcome is further investigated and discussed. 

 

3.3.1 Hypothetical River Application 

 

In order to test and compare the proposed methodology, a hypothetical river network is 

chosen from the literature (Ouyang, Yu et al. 2008). As shown in Figure 3.1, this river 

network is composed of 11 river reaches (capital letters) and 12 Junctions (numbers). The 

hydraulic characteristics of the river network are given in the following sections 

separately since some of the parameters are changed for illustration purposes. 
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3.3.1.1 Evaluation and Comparison of the Methodology 

 

The methodology proposed is applied to several cases based on the contamination pattern 

in the river network. In Case 1, a single spill may occur randomly at any junction of the 

river system. In Case 2 and Case 3 the possibility of the occurrence of two random 

contamination spills at any two distinct junctions of the river network is considered. In 

Case 2, the occurrence of the two spills is simultaneous, whereas in Case 3 there is a 15 

minute time lag between the two spill scenarios. In all cases, the best monitoring location 

is searched for a river monitoring system that is composed of three sensors. That is the 

optimization model given in Equation (3.6) is solved with constraint Mo=3. All three 

cases are investigated first on a simple hypothetical river system studied by Ouyang, Yu 
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Figure 3.1 Hypothetical River Network. 
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et al. (2008). This river network is composed of 12 junctions and 11 reaches as shown in 

Figure 3.1.  Therefore, the optimization algorithm will select the best placement scheme 

among 220CP 12
3   possible placement scenarios.  

 

To be able to compare the results of this study with the results given in Ouyang, Yu et al. 

(2008), it is assumed that all river reaches have the same rectangular cross-section with a 

top width of 10 ft and lengths of channels selected have the same proportions as reported 

in the above mentioned study. Also, channel bottom slopes and Manning’s roughness 

coefficients of all channels are the same throughout the river system. Furthermore, flow 

rates at the most upstream reaches are set to be equal to 10 ft3/s. The resulting hydraulic 

characteristics of the river network are given in Table 3.1. In order to decrease the effect 

of CSTR assumption of SWMM, each river reach is divided into 100 ft long sub-

channels. 

 

The reason for these assumptions is to render the river network system to behave similar 

to the system analyzed by Ouyang, Yu et al. (2008). The analysis used in that study was 

based on a geometric analysis of the system as opposed to the dynamic analysis used 

here. 
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Table 3.1 Hydraulic characteristics of the River Network 

Reach 

 

Length 

(ft) 

Flow rate

(ft3/s) 

Depth

(ft) 

Width

(ft) 

Channel 

slope 

Manning’s

n 

A 2000 10 1.31 10 0.0001 0.02

B 2000 10 1.31 10 0.0001 0.02

C 2000 10 1.31 10 0.0001 0.02

D 2000 10 1.31 10 0.0001 0.02

E 1000 10 1.31 10 0.0001 0.02

F 2000 10 1.31 10 0.0001 0.02

G 3000 20 2.08 10 0.0001 0.02

H 4000 20 2.08 10 0.0001 0.02

I 2000 30 2.75 10 0.0001 0.02

J 3000 30 2.75 10 0.0001 0.02

K 5000 60 4.53 10 0.0001 0.02

 

 

In Case1, contamination events are assumed to be single instantaneous spills occurring at 

the junctions of the river system randomly. Therefore, the number of possible spill 

scenarios to be simulated is S=12. After simulation, best solution satisfying Equation 
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(3.6) is searched using GA. Since the search space and number of scenarios are not large 

in this study, the global optimum solution is also determined by exhaustive search 

method comparing all possible outcomes and the GA solution is verified using this 

method. Optimization algorithm locates one of the monitoring stations to be at the outlet 

(Junction 12) in order to maintain 100% reliability (Figure 3.2(a)). However, for 

reliability values less than 100%, other junctions can be used such that detection time is 

minimized. Optimum monitoring locations for 100% and 83% reliabilities are given in 

Figure 3.2(a) and (b) respectively. 

 

 

In Case 2, two instantaneous contamination spills are assumed to occur at distinct 

junctions spontaneously. Therefore, total number of possible spill scenarios to be 
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Figure 3.2 Optimal monitoring stations for Case 1. 
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simulated is 66CS 12
2  . For this case, both GA and exhaustive search method reached 

the same best placement scheme. As previously mentioned, the only difference between 

the contamination scenarios in Cases 2 and 3 is the 15 minutes time lag between the spills 

in Case 3. This difference doubles the total number of possible spill scenarios to be 

simulated in Case3 as 132C2S 12
2  . Again, exactly the same results were obtained 

from GA and exhaustive search method.  

 

For Cases 2 and 3, although the optimized solutions do not have a monitoring station at 

the outlet (Junction 12), detection likelihood values are 100%. This result comes from the 

fact that even if one of the spills occurs at Junction 12 and is not detected, the monitoring 

station at junction 6 guarantees the capture of the other spill event. Therefore, in order to 

minimize detection time optimization algorithm moves the monitoring station at the 

outlet in Case1 (Figure 3.3(a)) to another junction for Cases 2 and 3 (Figure 3.3(b)). 
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Best monitoring locations for all three cases and corresponding detection times and their 

reliability values are given in Table 3.2. Since any non-detected scenario is represented 

by the simulation time, the detection time increases significantly as reliability decreases. 

Also, number of spills in the assumed scenarios has an important effect on detection time. 

Table 3.2 indicates that, for 100% reliability, single spill scenarios result in longer 

minimum detection time than two-spill scenarios. Furthermore, the time lag between two 

spills results in an increase in minimum detection time. 
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(a) Solution for Case 1 (b) Solution for Cases 2 and 3 

Figure 3.3 Optimal Monitoring Stations for Case 1, 2, 3. 
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Finally, to demonstrate the effect of dynamic fate and transport processes, results of Case 

1 are compared with the results of the study in which optimization was performed based 

only on geometrical characteristics of the river system (Ouyang, Yu et al. 2008). As seen 

from Figure 3.4 optimization algorithm of our study moves the monitoring station at 

Junction 7 to Junction 9. This increase in the importance of Junction 9 comes from the 

fact that Reach E is the shortest channel in the river system thus any spill at Junction 10 is 

captured at Junction 9 in a much shorter detection time. Also, the minimum detection 

time for the configuration proposed by Ouyang, Yu et al. (2008) is calculated as 72.5 

minutes which is larger than that of this study (Table 3.2). 
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Table 3.2 Summary of results for hypothetical river system. 

Case 

Number 

Optimization 

Method 

Optimum Sensor 

Locations 

Minimum Detection 

Time (min) 

Reliability

(%) 

1 

Genetic 

Algorithm 

6 – 9 – 12 63.75 100

4 – 7 – 9 1000 83

Enumeration 

Search 

6 – 9 – 12 63.75 100

4 – 7 – 9 1000 83

2 

Genetic 

Algorithm 

2 – 6 – 9 32.05 92

6 – 9 – 12 37.73 100

Enumeration 

Search 

2 – 6 – 9 32.05 92

6 – 9 – 12 37.73 100

3 

Genetic 

Algorithm 

2 – 6 – 9 38.09 92

6 – 9 – 12 44.55 100

Enumeration 

Search 

2 – 6 – 9 38.09 92

6 – 9 – 12 44.55 100
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3.3.1.2 Emphasis on Hydraulic Parameters 

 

Up to this point, all hydraulic parameters such as Channel bottom slopes, Manning’s 

roughness coefficients and width of the channels are assumed to be uniform trough out 

the river network (original configuration) as shown in Table 3.1. In order to demonstrate 

effect of these parameters on the optimal solution, only the Manning’s roughness 

coefficient of reach G is increased from 0.02 to 0.05 and all other parameters are kept the 

same in the modified configuration. This increase in the roughness of channel G will 

decrease the velocity and increase the depth from 2.08 ft/s to 3.96 ft/s slowing down the 

transport of contaminant in that channel. Consequently, the optimization algorithm which 

tries to minimize the average detection time will prefer a location upstream of channel G. 
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Figure 3.4 Comparison of the results of this study and Quyang et al. (2008) 
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Figure 3.5 shows that for 100% reliability solution in Case 1, the monitoring station 

downstream of channel G at Junction 6 in the original configuration is moved to an 

upstream position at Junction 2. This action further affects the position of the monitoring 

station at Junction 9 in the original configuration moving it to Junction 7 in modified 

configuration. The optimum solutions for all three cases are summarized in Table 3.3 

which demonstrates that slow transport at channel G increases the importance of Junction 

2 and Junction 9 is still assigned a monitoring station for two spill scenarios. Table 3.3 

also indicates that average detection times for all cases are increased as expected due to 

slow motion of contaminant through channel G. 
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Figure 3.5 Comparison of optimum solutions for the river network with original and

modified hydraulic parameters for Case 1 with 100% reliability. 
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Table 3.3 Effect of hydraulic parameters on optimum solutions. 

Case 

Hydraulic

Configuration

Optimum Sensor

Locations 

Average Detection 

Time (min) 

Reliability 

(%) 

1 

Original 

Modified 

6 – 9 – 12 

2 – 7 – 12 

63.75 

70.00 

100 

100 

2 

Original 

Modified 

6 – 9 – 12 

2 – 9 – 12 

37.73 

39.32 

100 

100 

3 

Original 

Modified 

6 – 9 – 12 

2 – 9 – 12 

44.55 

46.14 

100 

100 

 

3.3.1.3 Emphasis on Watershed Characteristics 

 

The aim of this part of the work is to illustrate the effect of watershed characteristics such 

as areas of subcatchment discharging the rain water into the river network and the 

intensity of this rain on the optimum placement of the monitoring stations. From another 

point of view, influence of the unsteady behavior of the river flow as a consequence of 

rain events on the optimum solution is investigated in this section of the study. To reach 

this purpose, hypothetical subcatchments are assigned for each junction of the river 

system. Area of each subcatchment is assumed to be directly proportional to the total 

length of the upstream river reaches discharging into the corresponding junction with the 
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ratio 1/2000 ac/ft. For the most upstream subcatchments, it is assumed that there is an 

imaginary river reach which has the same length as the real river reach just downstream 

of the corresponding junction.  Possible rainfall intensities are assumed to be 1, 3 and 5 

in/hour with a rain fall duration of 1 hour. All other hydraulic parameters are kept the 

same as listed in Table 3.1. One contamination event is assumed to occur with one rain 

event simultaneously at independent junctions as a possible scenario. Thus, there exist 12 

possible rain locations with 3 different rain intensities and 12 possible contamination spill 

points resulting in a total number of possible scenarios to be simulated as

S 3 12 12 432    .  

  

The assumption that area of each subcatchment is proportional to the upstream river 

reaches results in subcatchments of different areas connected to junctions of the river 

network. For example, using the proportionality constant of 1/2000 ac/ft, while the area 

of the subcatchment assigned to Junction 1 in Figure 3.6 can be calculated as 1 ac, the 

area connected to Junction 7 is 3 ac. These differences in the areas of the subcatchments 

result in different rainfall runoff behaviors such as total volume of rain water, duration of 

rainfall runoff and peak discharge. Consequently, each rain event produces a different 

unsteady flow rate scheme in the river system. This leads to a faster transport of 

contaminant at some reaches than others and affects the optimum solution in a more 

complex but similar manner as explained in previous section. Figure 3.6 shows the best 

sensor placement for 100% reliability with an average detection time of 55.65 min. This 

decrease in the average detection time from 63.74 min for Case1 in Table 3.2 to 55.65 

min for the scenarios with the rain events comes from the fact that rainfall runoff makes 
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the contaminant transport faster causing the contaminant to reach the sensor locations 

earlier. 

 

 

 

3.3.2 Altamaha River Application 

 

Altamaha river basin is the largest watershed in the State of Georgia, USA draining the 

water collected from about 25% of the state area to the Atlantic Ocean in a south-east 

direction. It is also the third largest basin discharging to the Atlantic Ocean to the east of 

Mississippi river. As shown in Figure 3.7, Altamaha River system is formed by the 

confluence of Ocmulgee, Oconee and Ohoopee rivers.  This river network is composed of 

60 river reaches 32 of which are upstream channels discharging into 28 internal streams. 
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Figure 3.6 Optimum locations of monitoring stations with 100% reliability and average

detection time of 55.65 min considering rainfall events. 
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All these channels form 30 confluences and 32 upstream points resulting in a total of 62 

river junctions. 

 

 

 

Complexity of the Altamaha River system does not only come from the number of river 

reaches and the number of confluences they form. In addition to these, irregular 

characteristics of the natural topography, natural river cross-sections and complexity of 

lateral inflow rates are some of the difficulties that have to be overcome during the 

analysis of the hydrodynamics and the contaminant fate and transport characteristics of 

the system.  

 

±

Figure 3.7 Altamaha River network in the State of Georgia USA. 
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During the simulation step, one of the most important parameters that need to be 

estimated is the slope of the river beds. This information is obtained from the digital 

elevation data using ArcGIS. The digital elevation data maps are supplied by U.S. 

Geological Survey (USGS) in the National Elevation Dataset (USGS 2008). In this study, 

the digital elevation dataset which has the highest precision available is used with a 

resolution of 1 arc second (30 m). From this dataset, elevations of all junctions are 

determined and the slope of each river reach is assumed to be constant and calculated 

from the elevation difference between corresponding upstream and downstream 

junctions.  

 

An important hydraulic dataset for the hydrodynamic analysis is the cross-sections of the 

river channels in the river system. In this study cross-section of a river channel is 

approximated as a trapezoid as shown in Figure 3.8. There are limited cross-section data 

available for the river system. This dataset can be obtained from bridge crossings and 

existing USGS monitoring site locations. These data are more extensive for the Lower 

Altamaha region which is downstream of the confluence of Ocmulgee and Oconee rivers 

(Figure 3.7). The data for cross-sections are obtained from the data available for this 

region (Gunduz and Aral 2003; Gunduz and Aral 2003) and meticulously extended to 

upstream regions of the river system considering the site conditions and data that exist for 

these regions. For this purpose, an upstreamness factor which indicates relative position 

of a river reach in the system is defined as described in Figure 3.9. Then, the geometric 

parameters for the river channels are determined assuming linear relation with respect to 

the upstreamness factor as shown in Table 3.4. 
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Figure 3.9 Upstreamness factors along Altamaha river system 
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Figure 3.8 Trapezoidal approximation for the river cross-sections 
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Table 3.4 Geometric parameters used for the analysis. 

Upstreamness 

Factor 

b 

(ft) 
z 

1 73.00 10.00 

2 80.00 11.25 

3 87.00 11.88 

4 94.00 12.50 

5 101.00 13.13 

6 108.00 13.75 

7 115.00 14.38 

8 122.00 15.00 

9 129.00 15.63 

10 136.00 16.25 

11 143.00 16.88 

14 164.00 18.75 

25 241.00 25.63 

29 269.00 28.13 

30 276.00 28.75 

31 283.00 29.38 

32 288.00 30.00 

 

In order to assign steady state inflow rates to each river reach, the data provided by 

USGS gauging stations are used. The steady state hydraulic system is calibrated for the 
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flow pattern in the river based on the data obtained from annual average flow rates 

measured in 1990 at 14 gauging stations by USGS. These gauging stations are distributed 

throughout the river network. The inflow discharges are assigned at the most upstream 

river reaches such that the flow rates at the USGS gauging stations obtained from the 

hydrodynamic simulation became consistent with the field measurements. At this 

calibration step, the rainfall runoff from the watershed into the river system was not 

considered, since the regionally heterogeneous rainfall data was not available for the 

period of analysis. For this reason it is impossible to obtain the exact flow rates that are 

measured by USGS at the gauging stations. The weighted average percent error between 

the measured and predicted flow rates was 4.5% for the fourteen gauging stations 

considered in the calibration analysis performed which is considered to be acceptable for 

the purposes of this study. The measured discharge at the most downstream gauging 

station in 1990 is reported as 14,430 cfs. This flow rate is also maintained by adjusting 

the discharges of the most upstream river reaches which would yield a minimum 

deviation in other gauging stations. A Manning’s roughness coefficient of 0.02 is 

assumed for all the river system which is a typical value for the Altamaha region. 

 

3.3.2.1 Selection of Potential Monitoring Stations and the Design of the Contamination 

Scenarios 

 

For the locations of candidate monitoring stations, confluences and most upstream points 

are considered first. However, since this selection limits the set of potential monitoring 
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sites with the locations of confluences, additional nodes are added evenly along each 

river reach. As a result, number of candidate monitoring locations is extended to 100 as 

shown in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

In this study, single instantaneous spills are considered for the contamination scenarios. 

Possible locations of these spills coincide with potential monitoring sites described in 

Figure 3.10.  Although similar spill events are taken into account, 3 different scenario 

sets are generated in terms of timing of the spills and hydrodynamics of the river system. 

The peak contaminant concentration profile obtained for one of these instantaneous spills 

±
Potential monitoring stations 

Figure 3.10 Selected locations for spill locations and candidate monitoring stations. 
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is shown as a typical outcome profile along the river path in Figure 3.11. In this case the 

spill originates at junction one and along the way passes through the junctions 19, 80 and 

100. In Figure 3.11 the horizontal axis is the junction index thus representing the distance 

from the spill. In this scenario the maximum concentration at the spill location is 100 g/l 

which is kept constant for all scenarios. Although conservative chemicals are considered 

in this study the dilution effects can be clearly observed from Figure 3.11 as the 

contaminant migrates in the downstream direction. Based on this observation, it is 

important to note that detection threshold selected in the analysis plays an important role. 

As can be seen from Figure 3.11, if the detection threshold is selected as 0.01 mg/L this 

spill will not be detected by any monitoring station to the downstream of junction 80. In 

addition to the analysis of the transient hydrodynamics within the watershed as described 

below, the algorithm proposed in this study takes the dilution effects observed into 

consideration in selecting the monitoring station locations. 
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In the Scenario set A, single instantaneous spill events occurring at random junctions are 

considered and all contamination events are assumed to occur at the beginning of the 

simulation period which is selected as 15 days, i.e. s ,injt 0 and simt 21600 min  in 

Equation (3.1). Therefore, for this case the number of possible spill events to be 

simulated is S=100. 

 

The Scenario set B consists of spill events in scenario set A repeated at different spill 

times. In this scenario set, the simulation time is reduced to 4 days consistent with the 

contaminant travel time in the river network and the contamination events are assumed to 

occur in a fraction of this simulation period indicated as  spt  as shown in Figure 3.12. 
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Figure 3.11 Transport and fate of peak concentration of a contaminant plume. 
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Thus spt  is the maximum time period for possible spills to occur. For the Scenario set B, 

spt  is selected as 2 days and 48 different injection times, s ,injt  evenly distributed in this 

time period are considered. Therefore, number of scenarios to be simulated in the 

Scenario set B is S=4800. 

 

 

The Scenario set C is designed to represent unsteady hydrodynamic behavior of 

Altamaha watershed. For this purpose, Altamaha basin is divided into 100 sub-

catchments using digital elevation data as described in Figure 3.13 where  a sample set of 

these sub-catchments are presented to indicate their selection process. These sub-

catchments are determined such that each area drains rain water to one of the 100 nodes 

selected as possible spill locations shown in Figure 3.10. Among these 100 sub-

catchments, 24 of are selected to receive rainfall. Thus, 2400 scenarios are generated such 

that each scenario has a contamination location randomly selected among 100 nodes, and 

a random contamination time selected between 0 and 48 hours i.e. spt 2 days as 

Starting times of contamination events 

Figure 3.12 Spill times for scenario sets B and C. 
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described in Figure 3.12. Also, in each scenario, there are random rain events occurring 

in 12 sub-catchments randomly selected among 24 sub-catchments. Each rain event also 

has a randomly assigned rainfall intensity as 1, 3 and 5 inch/hr and a random rainfall 

duration selected among 1, 2 and 3 hours. Furthermore, each rainfall event has a random 

start time selected among 0, 12, 24, 36, 48, 60 and 72 hours. The simulation time is also 

set to 4 hours in Scenario set C. 

 

 

3.3.2.2 Optimal Monitoring Locations for the Scenario Set A 

 

For this scenario set, optimal solution is obtained for several different numbers of 

monitoring stations such as  5,6,7,10 20oM and . For this analysis both GA and 

enumeration methods are used for the cases in which 7 or less number of monitoring 

Subcatchmets that receive random 

Figure 3.13 Watershed delineation for Altamaha basin. 
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stations are to be located since the total number of possible placements for a monitoring 

network composed of 7 monitoring stations is 100 10
7 7P C 1.6 10   for which all 

possibilities can be searched in a reasonable computational time. However for 10 and 20 

monitoring stations the number of possible placements would be very large (e.g. 

100 13
10 10P C 1.7 10   ). For those two cases GA is used to identify the best monitoring 

locations. In addition to the use of different numbers of monitoring stations, effect of 

detection threshold of the sensors on the optimal solution is also analyzed using two 

different threshold values of 0.0001dtC   mg/l and 0.01dtC   mg/l. This analysis is 

included to provide information on the effect of dilution on the selection of best locations 

of the monitoring stations. 

 

The best monitoring locations are determined by minimizing the average detection time 

and by maximizing the detection likelihood as given in Equation (3.6).  In Figure 3.14, 

results of this optimization problem for a monitoring network of 5 stations are 

summarized. Figure 3.14(a) shows that for the low detection threshold, the optimization 

algorithm locates one of the monitoring stations at the outlet to reach 100% reliability. 

When the solutions for the 100%, 80% and 60% reliabilities are considered for the same 

detection threshold value, it can be seen that for lower reliability values, the optimization 

algorithm yields more upstream junctions. Figure 3.14(b) shows that the maximum 

reliability that can be obtained by 5 monitoring stations with high detection threshold 

value is 96%. This result indicates that in cases where dilution is important, the most 

downstream monitoring station may not necessarily be at the outlet. When Figure 3.14(a) 
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and (b) are compared, it can be seen that detection threshold value changes the optimum 

solution for maximum reliability values and for the 80% reliability. However, for 60% 

reliability solutions the best result for both detection threshold values are the same. The 

reason behind this outcome is that 60% reliability value is so low that the optimal 

solution is independent of the detection threshold of the monitoring system. 

 

As the number of monitoring locations increase, the additional stations are placed in more 

upstream nodes as shown in Figure 3.15 and Figure 3.16. In Figure 3.15(b), it can be seen 

that the maximum reliability value that can be reached by a 6-station monitoring system 

with a detection threshold of 0.01dtC   mg/l is 98%. In a similar way, Figure 3.16(b) 

shows that 100% reliability can be reached, if the number of stations is increased to 7 for 

the same detection threshold value. Therefore, it can be concluded that for Altamaha 

River, at least 7 monitoring stations are required to maintain reliability of the system at 

100% if the monitoring devices have a detection threshold of 0.01dtC   mg/l. 
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100% Reliability 96% Reliability

80% Reliability 80% Reliability 

60% Reliability 60% Reliability 

(a) Detection threshold: 0.0001 mg/l (b) Detection threshold: 0.01 mg/l

± ±

± ±

± ±

Figure 3.14 Optimum locations for 5 monitoring stations for Scenario set A. 
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100% Reliability 98% Reliability

80% Reliability 80% Reliability 

60% Reliability 60% Reliability 

(a) Detection threshold: 0.0001 mg/l (b) Detection threshold: 0.01 mg/l

± ±

± ±

± ±

Figure 3.15 Optimum locations for 6 monitoring stations for Scenario set A. 
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100% Reliability 100% Reliability

80% Reliability 80% Reliability 

60% Reliability 60% Reliability 

(a) Detection threshold: 0.0001 mg/l (b) Detection threshold: 0.01 mg/l

± ±

± ±

± ±

Figure 3.16 Optimum locations for 7 monitoring stations for Scenario set A. 
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Another interesting result that can be observed in Figure 3.15(b) and Figure 3.16(b) for 

the maximum reliability values is that the optimization algorithm does not always prefer 

the junctions at the confluences of the river reaches. This shows that internal nodes may 

also be selected as the monitoring locations as long as the average detection time is 

minimized. This fact can also be seen in cases where number of monitoring stations is 

further increased to 10 and 20 as shown in Figure 3.17 and Figure 3.18 in which optimum 

locations only for 100% reliability values are presented. When these figures are 

considered, it can be said that as the number of monitoring stations increases in a 

monitoring system, the effect of detection threshold (or dilution) on the optimum 

placement of the stations decreases as expected. This fact can easily be observed in 

Figure 3.18 where the location of only one monitoring station is changed when the 

detection threshold is increased from 0.0001dtC   mg/l (Figure 3.18(a)) to 0.01dtC   

mg/l (Figure 3.18(b)). 

 

100% Reliability 100% Reliability

(a) Detection threshold: 0.0001 mg/l (b) Detection threshold: 0.01 mg/

± ±

Figure 3.17 Optimum locations for 10 monitoring stations for Scenario set A. 
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In Table 3.5, minimum average detection time values obtained for all monitoring systems 

for different numbers of stations and for different reliabilities are listed. From this table, it 

can be easily observed that as the reliability of the monitoring network decreases, the 

minimum average detection time increases. This outcome comes from the fact that the 

penalty value used in the calculation of detection time for the non-detected spill scenarios 

is very high. Another outcome that can be deduced from Table 3.5 is the fact that as the 

detection threshold (or dilution) increases, the minimum average detection time that can 

be reached by a monitoring network also increases. This is an expected result because 

when the concentration distribution within a contaminant plume is considered, it is 

obvious that regions of the plume with higher concentrations will reach the sensor at later 

times than the lower concentration regions.  However, as mentioned earlier, effect of 

detection threshold on the minimum average detection time decreases as the reliability 

100% Reliability 100% Reliability

(a) Detection threshold: 0.0001 mg/l (b) Detection threshold: 0.01 mg/l

± ±

Figure 3.18 Optimum locations for 20 monitoring stations for Scenario set A. 
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value of the monitoring system decreases and this effect become insignificant in 

determining best monitoring locations after some low reliability value. 

 

Table 3.5 Summary of optimum solutions for Scenario Set A. 

Number of 

Stations 

Detection threshold=0.0001 mg/l Detection threshold=0.01 mg/l

Reliability 

(%) 

Average Detection 

time (min) 

Reliability 

(%) 

Average 

Detection time 

(min) 

5 

100 1323 96 2706 

80 4988 80 5181 

60 9017 60 9095 

6 

100 1120 98 1898 

80 4894 80 4999 

60 8972 60 9042 

7 

100 926 100 1471 

80 4836 80 4945 

60 8911 60 8971 

10 100 695 100 905 

20 100 366 100 456 
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Finally, change of average detection time with the number of monitoring stations with 

different detection thresholds for the highest reliability values is presented in Figure 3.19. 

This figure shows that for small number of monitoring stations, average detection time 

sharply decreases as new stations are added to the system. However, for monitoring 

systems with larger number of stations, additional stations result in more gradual 

decrease in average detection time. Thus, Figure 3.19 can be used as a guideline for 

decision makers in adjusting the budget for the monitoring system design. Another 

important outcome that can be deduced from Figure 3.19 is the observation that as the 

number of monitoring stations increases, the difference between the average detection 

times of the monitoring system with different detection threshold values decreases. 
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Figure 3.19 Change of average detection time with the number of monitoring stations for 

maximum reliability values for Scenario set A. 

 

3.3.2.3 Optimal Monitoring Locations for the Scenario Set B 

 

In the application discussed above it can be seen that optimization algorithm can be used 

to select a single best solution given the scenarios and the reliability levels considered. 

The reason behind this outcome is the fact that all contamination events in scenario set A 

occur at the beginning of simulation period with a constant penalty of a large simulation 

time in case of non detection. Since in Scenario set B, simulation time is smaller and 
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penalty values of the scenarios are variable due to the variable spill times, the 

optimization algorithm determined 5 non-dominated best placement schemes for a 

monitoring project composed of 5 stations with a detection threshold of 0.01dtC  mg/l. 

In Figure 3.20 we present some of the optimal results obtained in terms of average 

detection time and reliability. In this figure, it can be seen that all the solutions 

represented by empty diamonds are dominated by the solutions represented by shaded 

diamonds. However, no dominance can be claimed among the shaded diamonds which 

indicate that these solutions constitute a Pareto front. In Figure 3.21, locations of the 

monitoring stations that correspond to the optimum solutions on the Pareto front are 

shown. 

 

 

Figure 3.20 Pareto front for scenario set B. 
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3.3.2.4 Optimal Monitoring Locations for the Scenario Set C 

 

For scenario set C in which transient hydrodynamic behavior of Altamaha watershed is 

considered using random rainfall events on randomly selected watershed, the 

optimization algorithm determined 8 non-dominated best placement schemes for a 

monitoring project composed of 5 stations with a detection threshold of 0.01dtC  mg/l. 

In Figure 3.22 some of these results are presented for selected optimal outcomes in terms 

of average detection time and reliability (presenting all dominated solutions in this figure 

would yield a very crowded figure). In this figure, a Pareto front is formed by the shaded 

85.7 1662.0

88.4 1696.0

89.8 1720.4  

85.2 1658.6

84.7 1648.8

Reliability Avg. Det.  

Figure 3.21 Locations of monitoring stations for the solutions on the Pareto front for

the Scenario set B. 
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diamonds since they both have a shorter average detection time and higher reliability than 

those of all other solutions represented by empty diamonds according to Pareto front 

definition. In Figure 3.23, the locations of the monitoring stations corresponding to the 

optimum solutions that are on the Pareto front are shown. In this figure, it can be seen 

that all of the 8 monitoring systems (solutions) have monitoring stations at the locations 

indicated by arrows. With this outcome, one can argue about the importance of these 

locations, since which optimal solution is selected from the Pareto set, there will be a 

station placed at these nodes. 

 

When the outcomes of Scenario Sets B and C are compared, it can be observed that the 

number of solutions in Pareto front is increased from 5 (Scenario Set B) to 8 (Scenario 

Set C). The reason behind this result can be the increased level of randomness in scenario 

generation for Set C. When Figure 3.21 and Figure 3.23 are considered, it can be 

observed that the ranges of average detection time and reliability values in the Pareto set 

are similar for Scenario sets B and C (e.g. reliability values on Pareto front for Set B take 

values from 84.7% to 89.8% and they take the values between 84.3% to 90.5% for 

Scenario Set C). However, final monitoring system designs reached by these two sets of 

scenarios are quite different. As an example, the optimization utilizing from the Scenario 

Set B prefers more number of nodes on Ocumulgee River (Figure 3.7) than the 

optimization using the Scenario Set C. 
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Figure 3.22 Pareto front for Scenario set C. 
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3.4 Conclusions 

 

A methodology is proposed to identify the locations of the best monitoring stations in a 

river system. In the proposed method, hydrodynamics and the fate and transport of the 

contaminants play important role in the determination of the best monitoring locations. In 

optimization, genetic algorithms are used and results are verified by enumeration when 

possible. Optimization method is applied to the Altamaha river network and several 

monitoring systems are designed and compared. It is observed that optimization 

parameters such as simulation time and penalty values have important effects on the 

±
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Figure 3.23. Locations of eight monitoring station sets for the solutions on the Pareto

front for Scenario set C. 
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diversity of the optimum solutions. It is demonstrated that in some cases non-dominated 

solution sets can be obtained where a Pareto front analysis would be necessary. The 

results indicate that, in the Altamaha river system application discussed in this thesis, 

certain common patterns can be observed in the optimal monitoring location sets 

obtained. This may or may not be the case for other river networks. However, in the 

Altamaha river system case these common patterns indicate that preferred locations of 

monitoring stations are apparent for the objectives that are considered in this study.  

Results are promising in terms of applicability of the proposed methodology to the 

monitoring network system design.  

 

The analysis presented is based on two objectives: i.e. the detection time and reliability. 

The proposed method may also be extended to include other objectives such as minimal 

cost of operation of the system, the suitability of access to monitoring stations, cost of 

sensors, and use of non-conservative chemicals in the analysis. These are minor 

extensions of the overall methodology described here and are not considered in this case. 
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4 CHAPTER 4  

 

IDENTIFICATION OF CONTAMINANT SOURCE LOCATION IN 

RIVER NETWORKS 

Equation Section (Next) 

4.1 Introduction 

 

The improving real-time monitoring technologies introduce new tasks to these systems 

such as rapid identification of contamination source locations. In theory, this is an ill 

posed problem which has non-unique solutions due to the irreversible nature of 

contaminant transformation and transport processes. In this study, we propose a 

methodology that utilizes a classification routine which associates the observations on a 

contaminant spill to one or more of the candidate spill locations. This approach consists 

of a training step followed by a sequential elimination of the candidate locations which 

leads to the identification of spill locations. The training of the monitoring system 

although requires a significant simulation time, it is performed only once. The statistical 

elimination for the ranking of the candidate locations is a rapid process. The proposed 

methodology is applied to the Altamaha river system in the State of Georgia, USA. The 

results show that the proposed approach can be effectively used for the preliminary 

planning of the contaminant source investigation studies in complex river systems. 
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4.2 Methodology 

 

The proposed methodology is based on three steps: (i) obtaining contaminant 

concentration breakthrough curves for the spill scenarios at the monitoring stations under 

random hydrodynamic behavior of the river system. Features of each of these 

breakthrough curves quantified and stored in this step are going to be utilized in the 

second step; (ii) estimation of conditional probability density functions of each feature 

given that the spill has occurred at a known location. These probability densities once 

obtained are generic for the river system under consideration and steps (i) and (ii) are 

performed only once. These first two steps can also be interpreted as the training process 

of the proposed methodology. Finally, in step (iii), possible spill locations are determined 

by applying adaptive sequential feature selection (ASFS) algorithm to the conditional 

probabilities obtained in step (ii). 

 

4.2.1 Features of Breakthrough Curves 

 

When a spill occurs at a random location in a river system, the contaminant mass 

undergoes transformation and transport processes such as advection, diffusion,  

dispersion and chemical reactions as it travels downstream. When the plume reaches to 

the monitoring station, its concentration can no longer be measured as a unit pulse 

concentration. Instead, due to the mixing effects of diffusion and dispersion processes, 

the monitoring station will observe a distribution of concentration over time as a temporal 
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breakthrough curve. Breakthrough curves can therefore be interpreted as and have the 

same properties with the probability density curves (Grubner 1971).  For some 

monitoring stations, it is also possible to measure the average velocities or the flow rates. 

In this case, the monitoring system provides both temporal and volumetric distribution 

(breakthrough curve) of the contaminant concentration (Brooks and Wise 2005).  Either 

temporal or volumetric, the breakthrough curves can be characterized by a series of 

statistical moments. The ordinary statistical moments are given in Equation (4.1). 
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where  is a generic variable which takes the values of time or cumulative volume, 

 C  is the concentration measured at a given  and km is the thk  temporal or 

volumetric (depending on  ) ordinary statistical moment. Then, the central statistical 

moments can be estimated about the first ordinary statistical moment. 
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The zeroth and the first ordinary moments ( 0m  and 1m ) represents the area under the 

normalized distribution curve and the mean of this distribution respectively. More 

precisely, 0m  always has the value 1 and the value of 1m  depends mainly on the spill 

time. Therefore, these two ordinary moments do not give sufficient information to 

characterize breakthrough curves. The second central moment 2m  quantifies how wide 

the breakthrough curve is and represents the variance of the concentration distribution 

curve. The standard deviation of this curve,  , can be estimated by the square root of 

the second central moment. 

 

 2m    (4.3) 

 

 

The third central moment is used to quantify the asymmetry of the concentration 

distribution curve relative to a normal distribution. This measure is called skewness and 

calculated as shown in Equation (4.4). 
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A negative skewness value indicates that the concentration distribution curve has a tailing 

toward small values of  . Another important feature that distinguishes a breakthrough 

curve from others is the excess. Excess gives information on the peaking of the 

concentration distribution curve compared to a Gaussian distribution and it is calculated 

from the fourth central moment. 
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A positive excess value indicates that the distribution is more peaked relative to a 

Gaussian distribution which has an excess value of zero. 

Since the fifth and higher statistical moments do not provide important information for 

the analysis of the probability curves, it can be said that breakthrough curves have three 

main features, which are obtained from the second, third and fourth statistical moments. 

Then, a spill may have six main features since a monitoring station generates a temporal 

and a volumetric breakthrough curve. 

 

The real-time water quality monitoring stations provide time variation of the contaminant 

concentrations in the river water by electronic measurements with a certain time step. 

Therefore, the breakthrough curve is observed at some finite number of times and 

Equations (4.1) and (4.2) should be approximated accordingly. Although the time step 

between two consecutive observations may most of the time be constant, the volume that 
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passes the monitoring station at every time step will not be constant due to the unsteady 

nature of the river flow. Therefore, the generic equations for the moments can be 

approximated such that the difference in  values is variable and trapezoidal rule is 

applied for the approximation. 
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where n is the total number of observations in the breakthrough curve. 

It should be noted that this study assumes that contaminants are conservative substances 

thus chemical reactions are neglected. The choice of conservative substances is not a 

limitation on the methodology proposed. However, in that case non-conservative 

contaminants should be used to develop the training scenarios as discussed below. 
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4.2.2 Training Process 

 

The proposed methodology requires a large number of contamination scenarios with 

known source locations in order to construct the training sets for the monitoring stations. 

A training set is constructed by several spill scenarios with random spill mass, spill time 

and river hydrodynamic parameters at every candidate spill location. Each of these 

scenarios creates a breakthrough curve. The features of these breakthrough curves can be 

estimated as explained in the previous section. If each breakthrough curve has d  features 

which are continuous random variables, then they form a random feature vector X . If we 

let there are M  available spill locations (or classes) in the class set  1,2,...,M 
 
then 

the class Y   is a discrete random variable. The spill location (or the class) of a vector 

X  is known in the training process. Therefore, one can obtain the conditional probability 

density function of the feature vector X  given that it belongs to a class of Y ,  f X |Y . 

However, in this study we are interested in the probability of occurrence of a spill at a 

candidate location given that its breakthrough curve has the observed features, i.e. 

 P Y | X . This probability can be estimated using Bayes’ theorem as described in 

Equation (4.8). 
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where j  is an integer specifying the class of the observed features, iX  and ix  represent 

the i th feature and its value respectively.  P Y j  is the prior probability of class j  to 

be the spill location. In this study, it is assumed that all candidate locations have the same 

prior probability of being the spill location, i.e.   1
P Y n , n 


    . 

 

4.2.3 Adaptive Sequential Feature Selection 

 

Once a spill is detected at the monitoring station and its features described in the previous 

section are calculated, the next step is to decide the location of the spill. In this study, we 

formulate this question as a classification problem. This formulation requires a finite set 

of classes which are preselected nodes as the candidate spill sites located upstream of the 

monitoring station. Then, the spill monitored is classified into one of these candidate spill 

locations according to its observed features. For this classification an adaptive feature 

selection (ASFS) algorithm proposed by Jiang (2008) is implemented. 

 

ASFS algorithm is a classification tool to label an arbitrary test data which has the 

features  T1 2 dx x ,x ,...,x  with one of the M classes by optimizing a criterion associated 

with the statistical entropy of each class conditioned on observations described by x . 
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In information theory, entropy is a measure of uncertainty of a random variable or 

process (Shannon 1948). ASFS algorithm uses entropy to measure the uniformity of the 

probability distributions. The entropy of a probability distribution increases as it 

approaches to a uniform distribution. The entropy of a discrete random variable S which 

may have N  different values with the probabilities  nP S s , where n 1,2,...,N  is 

defined in information theory as:  
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 Then, the entropy for the prior probability mass function for the classes Y  and the 

class entropy conditioned on the feature ix  can be calculated as described in Equations 

(4.10) and (4.11) respectively. 
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where  i iP Y j | X x   is the conditional probability of Y  being j  given that the thi  

feature has the value of ix . The ASFS algorithm calculates the quantity  i 0 iq x H H   
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to find the best feature to simplify the classification process. Thus, the feature, *x , which 

maximizes the reduction in the class entropy can be determined by Equation (4.12). 

 

  * ix arg max q x  (4.12) 

 

ASFS algorithm provides a systematic process which iteratively eliminates one or more 

elements from a set of classes at each stage of the search and selects class of the tested 

sample as the final class remaining in the set. To summarize this iterative process, let k  

be the set of candidate classes survived until the thk  stage of the algorithm and k  be 

the number of elements in this set, where k  is an integer greater than zero. Then, as 

shown in Figure 4.1, ASFS algorithm first calculates the quantity  iq x  for all features 

using Equations (4.10) and (4.11). The next step is to determine the best feature, *x , for 

the class elimination process by satisfying Equation (4.12). In the class elimination 

process, probability of each class  k i  conditioned on the selected feature, *x , is tested 

against a threshold T and the classes which have a probability value greater than this 

threshold is kept in a set   which was initially an empty set. Once all the classes are 

tested the new class set k 1   takes the elements of  . This procedure is repeated until 

has only one element which will be assigned as the class label of the sample. Here, 

Jiang (2008) recommends to use the median value of the probabilities  i iP Y j | X x   

as the threshold value which eliminates half of the classes at each stage. However, in this 

study, our aim is to rank the classes rather than a quick elimination. Thus, we use the 
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minimum value of these conditional probabilities as the threshold which eliminates only 

one class most of the time. In this thesis, we have provided a brief description of ASFS 

algorithm including the details that are essential for this study. Other details such as 

properties of this algorithm and its comparison with another pattern recognition method 

can be found in Jiang (2008). 
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Figure 4.1 Flow chart for ASFS algorithm 
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4.3 Applications 

 

The proposed methodology is tested for several spill realizations that might occur on 

Altamaha river system. For this purpose, first a monitoring system is designed for this 

large river system (Telci, Nam et al. 2008; Telci, Nam et al. 2009). Then, monitoring 

stations are trained for the ASFS algorithm by a large number of spill scenarios to obtain 

the required probability distributions of the features of breakthrough curves observed at 

these stations. Finally, the spill realizations which occur at random locations are used to 

evaluate the performance of the methodology. This evaluation is performed by taking 

into consideration the temporal and volumetric breakthrough curves. 

 

4.3.1 Study Area 

 

The methodology is applied to the Altamaha river network as described in section 3.2.2. 

However, in this part of the study, a variable roughness distribution with higher values 

(up to 0.077) for upstream river reaches is sequentially developed throughout the river 

network as given in Table 4.1 where upstreamness factor is defined in Figure 3.9 of 

Section 3.2.2. 
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Table 4.1 Manning’s roughness coefficients used for the analysis 

Upstreamness 

Factor 
n 

 Upstreamness 

Factor 
n 

1 0.077  10 0.041 

2 0.070  11 0.039 

3 0.064  14 0.034 

4 0.060  25 0.023 

5 0.055  29 0.021 

6 0.052  30 0.020 

7 0.049  31 0.020 

8 0.046  32 0.020 

9 0.043    

 

Once the geometric parameters of the river system are determined, the next step is to 

estimate flow conditions in the river channels. For this purpose a two-step procedure is 

applied. In the first step, steady state flow rates also called the base flows in each river 

reach is estimated using the data provided by USGS gauging stations. The steady state 

hydraulic system is calibrated for the flow pattern in the river based on the data obtained 

from annual average flow rates measured in 2006 at 20 USGS gauging stations 

distributed throughout the river network. The inflow discharges are assigned at the most 

upstream sections of the river network such that the flow rates at the USGS gauging 

stations obtained from the steady state hydrodynamic simulation became consistent with 

field measurements. 
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In the second step of flow estimation, the random, unsteady hydrodynamic behavior of 

the river system is constructed for each scenario by superimposing the effect of the 

rainfall events on the base flows determined in the first step. For this purpose, rainfall 

measurements in the year 2006 from 10 different observation stations distributed 

throughout the watershed are obtained from National Climatic Data Center (NCDC 

2009). A statistical analysis is performed on these measurements and it is observed that 

the daily rainfall measurements follow a log-normal distribution. Then, for the 

simulations, the random rainfall intensities are assigned from the same log-normal 

distributions for 10 different regions of the Altamaha watershed. Next, these random time 

series of rainfall intensities are assigned to 10 different catchments as shown in Figure 

4.2. These 10 catchment areas are composed of 100 sub-catchments determined by 

watershed delineation such that the water accumulated on these sub-catchments is 

discharged to each of the 100 nodes indicated in Figure 4.2. 
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4.3.2 Scenario Generation and Design of Water Quality Monitoring Network 

 

In order to generate a training set for the proposed methodology, a large number of 

scenarios are designed such that the random, unsteady behavior of contaminant transport 

throughout the river network is represented. For this purpose, 1000 spill scenarios are 

produced for each of the 100 nodes indicated in Figure 4.2. In this study, only 

instantaneous spills are taken into account in this study. Each spill event has a random 

Catchments 

Sub-catchments 

Figure 4.2 Watershed delineation for Altamaha basin. 
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spill time and spill mass. The random, unsteady hydrodynamic behavior of the river 

network is guaranteed by a random combination of unsteady rainfall intensities assigned 

to 10 different catchments described in Figure 4.2, which also includes no rainfall events. 

The training sets are generated only once for each monitoring station separately and the 

same training set can be used to determine different real spill locations. 

 

Once these contamination scenarios are generated and simulated using SWMM, the 

results can be used to obtain breakthrough curve data for the training data set. Same 

breakthrough curves can be used to design an optimum real-time monitoring network for 

the river system. Telci, Nam et al. (2008) have developed a methodology for the optimal 

design of the monitoring systems in river networks. They determined the best locations 

for the monitoring stations by minimizing the average detection time and maximizing the 

expected reliability of the monitoring system. Then they applied this methodology to 

Altamaha river network (Telci, Nam et al. 2009). They showed that a Pareto optimal 

front made up of non-dominating solutions can be obtained for this optimization problem 

defined by two objective functions. In this study, a real-time monitoring system with 5 

stations is designed for the Altamaha river using the same methodology described by 

Telci, Nam et al. (2009) but using different hydrodynamic data. The locations of the 

stations of this selected optimal monitoring system are shown in Figure 4.3.  It should be 

noted that the proposed methodology is applicable to any real-time monitoring system 

independent of its design procedure. 
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Figure 4.3 Selected locations of spills for the training process and designed water quality 

monitoring system. 

 

4.3.3 Training of the Monitoring Stations 

When a spill occurs in the river network, the contaminant plume travels downstream with 

the river flow. If the plume is detected by a monitoring station, then one can decide that 
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the spill location is in the upstream region of the first activated monitoring station. This 

region consists of the river reaches between the first activated station and the station 

located just upstream which was not activated. Therefore ASFS algorithm requires that 

each monitoring station is trained by a set of spill scenarios occurring in its own region. 

Training of a monitoring station is performed to estimate the probabilities of the 

candidate spill locations conditioned on the value of features of the observed 

breakthrough curve. 

In this study, training process for the monitoring station M1 (Figure 4.3) is presented. 

Training set is a collection of large number of breakthrough curves observed at the 

monitoring station being trained. Each of these breakthrough curves have 6 features 

defined by Equations (4.3) to (4.5). For practical and consistency purposes, these features 

are collected in a feature vector X  as described in Equation (4.13). 

 
Tt t t V V VX S E S E      (4.13) 

 

 In this equation, 1X , 2X and 3X  where t   are temporal features of the 

breakthrough curves and similarly, 4X , 5X and 6X  where V   are volumetric 

features.  

In this study, monitoring stations are trained by 1000 random spill scenarios occurring at 

each candidate spill location. Since, monitoring station M1 has 26 candidate spill 

locations in its region, 26000 breakthrough curves are used in its training process. Figure 

4.4 presents how the features of these breakthrough curves are distributed relative to each 
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other.  In this figure, the clusters of scenario spill locations are observable. The clusters of 

some nodes are distinctly separated from others. However, majority of the spill locations 

have cluster clouds located within the other clusters. This observation is consistent with 

the non-uniqueness of the problem where the breakthrough curves which have the same 

features may originate from different spill locations. 

Once values of the features of all the scenarios in the training set are determined, the next 

step is to obtain conditional probability density function of a feature  i 1 2 6X X ,X ,...,X
 

given that spill occurred at node kY  , where k  is the set of integer numbers used to 

label the candidate spill locations. For this purpose, a frequency analysis is applied to 

each feature of each of the spill locations. Figure 4.5 shows some examples of this 

analysis for arbitrarily chosen spill locations and features. Since the spill location is 

known and fixed in these frequency plots, the probability density function  f X |Y  

obtained from them will be conditioned on the spill location. This probability density 

function can be approximated using Kernel density estimation technique. Next, Bayes’ 

theorem described in Equation (4.8) can be utilized to obtain posterior conditional 

probability of a candidate spill location given an observed feature, i.e.  i iP Y j | X x  . 

Then, this probability is used in ASFS algorithm to locate a real spill in the next step. 
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Figure 4.4 Feature plots for training of monitoring station M1. 
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Figure 4.5. Examples for the frequency analysis. 

 

4.3.4 Locating Spill Events 

 

In the training of the monitoring stations, spill scenarios located at predefined candidate 

spill locations are used. However, a spill event may occur anywhere throughout the river 

system rather than these discrete candidate locations. These candidate locations indicate 

the upstream and downstream nodes of the river reaches where a spill event may occur. A 

spill also creates temporal and volumetric breakthrough curves at the downstream 
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monitoring stations. The features of the breakthrough curves of the spill event define a 

point in the six dimensional feature space described in Figure 4.4. The ASFS algorithm 

associates this point to one of the clusters provided by the training set. However, the 

proposed methodology provides a ranking of the clusters with respect to their 

associations to the spill point rather than a final selection of the spill location among the 

candidate locations due to non-unique nature of the solution. ASFS algorithm inherently 

offers this ranking approach while it is eliminating the classes from the candidate set.  

 

Performance of the proposed methodology is tested by several spill event scenarios 

distributed over the regions of the monitoring stations M1 and M2 as shown in Figure 

4.6. In this figure, arrows in south direction indicate the location of the spill events tested 

and these spills are located at arbitrary places along the river reaches. Each realization 

has a random spill time, spill mass and hydrodynamic configuration. Realizations R1 to 

R9 occur in the region of monitoring station M1 (Region 1) and realizations R10 to R19 

represents the spills located in the region of the second monitoring station M2 (Region 2). 
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Figure 4.6 Spill realizations used to test the proposed methodology. 

 

Table 4.2 demonstrates how ASFS algorithm eliminates candidate nodes for the spill of 

realization R7 shown in Figure 4.6. In this table, thi  column indicates the candidate nodes 

for the thi  step of the algorithm and first row indicates the features used for the 

elimination of candidate nodes in each step. As seen from this table, ASFS algorithm 
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selects the best feature for the elimination process automatically at each step of the 

algorithm. The shaded cells show the upstream (dark) and downstream (light) nodes of 

the river reach where spill of realization R7 is occurred.  The algorithm starts with the set 

of all possible candidate nodes  1 26  . In this first step, the algorithm selects 2X  as 

the best feature which satisfies Equation (4.12) to eliminate the candidates from the class 

set. Since the nodes 20, 23 and 26 have the minimum (in this case zero)  conditional 

probability given that feature 2X  has the value obtained from the breakthrough curve 

observed at monitoring station M1 due to the spill of realization R7, these three nodes are 

eliminated from the class set in the first step. In the following steps of the algorithm, 

since only one node has the minimum probability conditioned on the selected feature, 

only one node is eliminated from the class set. At the end, the algorithm selects one node 

as the spill location and in the case of realization R7, node 18 which is the upstream node 

of the reach where spill has occurred is selected. However, we propose to provide a 

ranking of the candidate nodes rather than a single selected node and this ranking process 

can be clearly observed in Table 4.2. According to ASFS algorithm, the spill has 

occurred most probably at node 18. The next possible place is node 16 and then nodes 24, 

21, 3 and so on are other possible spill locations. Therefore, according to this algorithm, 

the investigation team will be sent first at region of node 18. This region can be defined 

as the upstream and downstream river reaches between node 18 and halfway to the other 

nearest nodes. If the investigation team cannot find the spill location in this first trial, 

they are going to investigate the regions of nodes 8, 21, 9, 5 and so on sequentially. 
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Table 4.2 Elimination process of ASFS algorithm for realization R7. 

 

The spill realization R7 is selected first to discuss the elimination process since it 

provides a very good example of feature selection property of the algorithm by switching 

between different features. It should be noted that this is not always the case and the 

algorithm may select the same feature for the majority of the elimination process. Spill 

realization R3 can be a good example of this case. Table 4.3 shows how ASFS algorithm 

eliminates candidate nodes for the spill realization R3 given in Figure 4.6. In this 

example, ASFS algorithm has selected nodes 7 and 8, which are the upstream and 

downstream nodes of the river reach where the spill has occurred, as the final two 

possible spill locations and at the end, node 7 was selected as the final prediction. In 

order to visualize how candidate locations change with ASFS iterations for the realization 
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spill R3, Figure 4.7 and Figure 4.8 are plotted showing the candidate spill locations at 

10th and 20th ASPFS iteration, respectively. In these figures shaded circles indicate 

candidate spill locations at a given ASFS iteration. In this case, we can rank the first five 

candidate nodes as 7, 8, 21, 9 and 3.  

 

Table 4.3 Elimination process of ASFS algorithm for realization R3. 
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Figure 4.7 Candidate spill locations for realization R3 at 10th ASFS iteration. 
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Figure 4.8 Candidate spill locations for realization R3 at 20th ASFS iteration. 

 

The overall performance of the proposed methodology for the realizations in Figure 4.6 is 

presented in Figure 4.9. In this figure, horizontal axis represents the number of elements 

in the class set at the thk  step of ASFS algorithm   k  and the vertical axis, Reliability, 

represents the ratio of the number of realizations where correct spill location is in the set 
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k
 
to the total number of realizations in percent. In this study, correct spill location is 

represented by either the upstream or the downstream node of the reach where the spill 

has occurred. Therefore, it is assumed that if the upstream or downstream node of the 

reach where the spill has occurred is kept in the set k , then k
 
contains the correct spill 

location. The square and diamond markers in Figure 4.9 represent the reliability values 

calculated using the realizations only in Regions 1 and 2 respectively. The circles indicate 

the reliability values estimated by including all realizations in both regions. This figure 

shows that when ASFS algorithm is allowed to eliminate the candidate class set until one 

element is left  k 1  , then this selected node is a correct spill location for 

approximately 60% of the time. When 3 elements are left in the class set, the reliability is 

approximately 90%. If the set size is further increased to 5, the correct spill locations for 

all the realizations in Region 1 are included the class set. Figure 4.9 also indicates a 

limitation for the proposed methodology since the reliability value for  Region 2 can 

become 100% only when the candidate class set size is as high as 16. This is due to 

realization R13 which occurs between nodes 32 and 33 (Figure 4.6).  These two nodes 

are eliminated from the class set at different steps of ASFS algorithm before the set size 

is reduced to 15. The reason behind this problem is the fact that node 32 is a most 

upstream node where the base flow rate is much smaller than that at node 33 which 

discharges the water coming from a large portion of the watershed. Then, a realization 

which occurs between these nodes does not have the feature values which result in high 

probabilities using Equation (4.8). However, such reaches are not very common in river 

systems and 90% reliability at a class set size of 3 indicates that the proposed 
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methodology is a reliable way of ranking the candidate nodes in terms of their association 

with the real spill.  

 

Figure 4.9 Overall performance of the proposed methodology. 

 

4.4 Conclusions 

 

A methodology is proposed to identify the location of a contaminant spill in a river 

system utilizing the measurements obtained from a water quality monitoring system. The 

first step of the method is training the monitoring stations with a large number of spill 

scenarios. Then the proposed method provides a rapid way of ranking the candidate 

locations using a classification routine. Although the training process requires a 

significant amount of simulation time, once it is done for a monitoring system, the 

method works without additional simulations. The classification routine requires only the 

features of the breakthrough curves measured at the monitoring stations to rank the 
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candidate spill locations. The results show that methodology ranks the correct spill 

location in the first 3 candidates for the 90% of the test cases. This result reveals that the 

proposed methodology can be used effectively for the preliminary planning of 

investigation studies for the spill locations. 

 

The analysis presented is based on 6 features obtained from statistical analysis of 

temporal and volumetric breakthrough curves. The proposed methodology may also be 

utilized without any change for completely different features other than these statistical 

parameters.  However, the performance of the method with the new feature set may be 

different than that presented in this thesis. The technique presented in this study is 

developed for instantaneous spill and conservative contaminant cases only. It may also be 

extended to include non-instantaneous and non-conservative spills. 
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5 CHAPTER 5  

 

RENEWABLE ENERGY PRODUCTION FROM  

WATER DISTRIBUTION SYSTEMS 

Equation Section (Next) 

5.1 Introduction 

 

Water distribution systems are designed to satisfy the consumer demands at the outlet 

nodes. To achieve this goal, adequate pressures need to be maintained throughout the 

network. As the complexity of a water distribution network increases, maintaining target 

pressures becomes difficult. This yields excess pressures at several locations of the 

network. The conventional solution to this problem is to install pressure reducing valves 

which adjust the local head loss to lower the downstream pressure. This approach 

dissipates significant amount of energy that can be recovered and used for the benefit of 

the community. This energy recovery is possible by the utilization of micro hydroelectric 

turbines as an alternative means of pressure reduction. In this study, an optimization 

approach for the design of energy recovery systems in water distribution networks is 

proposed.  This methodology is based on finding the best locations for micro 

hydroelectric plants in the network to recover the excess energy. Due to the unsteady 

nature of flow in water distribution networks, the proposed methodology also determines 

an optimum operation schedule for the micro turbines. The objective of the optimization 

algorithm is determined as the net annual energy gained by the energy recovery system. 

As a test case, the proposed methodology is applied to the water distribution system 
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serving the Dover Township area in New Jersey, which can be considered to be a typical 

small town in USA. The results show that this study is an effective tool for the 

assessment of renewable energy potential in water distribution systems. 

 

5.2 Methodology 

 

5.2.1 Hydrodynamic Simulation of Water Distribution System 

 

For the unsteady hydrodynamic analysis of the water distribution network EPANET 2.0 

is used. EPANET is a simulation tool for extended period modeling of hydraulic and 

water quality behavior of pressurized pipe networks (Rossman 2000). Elements of a 

network defined in EPANET are pipes, nodes (pipe junctions), pumps, valves and storage 

tanks or reservoirs. EPANET estimates the flow of water in each pipe, the pressure at 

each node and the height of water in each tank throughout the network at each time step 

during a simulation period. EPANET’s capability of considering multiple demand 

categories at nodes, each with its own time variation makes it a strong simulation tool for 

unsteady hydraulic behavior in water distribution systems. Although EPANET does not 

have a predefined turbine object as a network element, turbines can be simulated using a 

general purpose valve (GPV) defined in EPANET. In order to simulate a turbine as a 

GPV, the user needs to supply a special flow-head loss relationship. 
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5.2.2 Optimization Model 

 

In this study, the primary objective of the energy recovery system is defined as harvesting 

any available energy in the water distribution network at any given time while 

guaranteeing consumer demands without violating pressure constraints set by the 

management throughout the service period. The first step of this design procedure is 

deciding candidate location(s) and types of micro turbines that will be utilized in the 

energy recovery system. In addition to this decision, the highly unsteady nature of the 

water distribution system dictates an operation schedule for each micro turbine proposed 

to be installed. A proper energy recovery system design is possible with an operation 

schedule which enables the turbine to generate as much energy as possible without 

violating pressure constraints while satisfying consumer demands. For this purpose, the 

micro-turbine-bypass valve combination demonstrated in Figure 5.1 is proposed. This 

design enables us to adjust the flow passing through the turbine at any given time by 

adjusting the bypass valve opening. A completely closed bypass valve would force all the 

flow to pass through the turbine while a completely open bypass valve would let all the 

flow pass through the bypass pipe. Therefore, the operational schedule of a turbine can be 

determined by the degree of opening of the bypass valve. 
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Figure 5.1 Micro turbine-bypass valve combination 

 

If the energy recovery system has N  micro turbines located at N candidate locations, 

then we can represent these turbines with a vector  1 2, ,..., N     , where  i

represents candidate turbine proposed to be installed at the thi  candidate location and let 

the vector  1 2, ,..., N   
 
stands for the pipes where turbines,   are proposed to be 

installed. The operation schedule of each of these turbines can be represented by another 

vector  1 2, ,..., N     , where i  stands for the operational schedule of the turbine 

located at the thi  candidate location and therefore, i  is a vector of a  variable k which 

takes a real value between 0 and 1 representing the degree of opening of the bypass valve 

of the turbine, i.e. 1 2, ,...,
STi N   


    where STN is the number of time steps in the 

analysis period and  1, 2,3, , STk N  .  

 

For a given set of operation schedule of the candidate turbines, the system may not satisfy 

pressure constraint. In order to describe this mathematically, let 1, 2, ,, ,...,
Jk k k N kP p p p     
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denote the vector of pressures ,j kp  at the thj junction of the water distribution network at 

the thk time step of the analysis period where JN  is the total number of junctions in the 

network. Then, one can determine the first pressure constraint failure time,  ,ft   , 

such that   minmin kP P , where minP is the minimum pressure limit set by the 

management for safe operation. According to this definition, when  ,ft    is equal to 

the analysis period, one can say that for the given configuration of turbines   and 

respective operation schedules   , pressure constraint is satisfied at all locations, at all 

times. At this point we can define a dimensionless failure time,  ,T   as the ratio of 

the pressure constraint violation time  ,ft    to the total time of the analysis period, 

AT , as in Equation (5.1). It can be seen that  ,T    can have values between 0 and 1. 

While  , 0T    indicates that pressure constraint is violated at the very beginning of 

the analysis,  , 1T     implies that pressure constrained is satisfied throughout the 

analysis period. 

    ,
, f

A

t
T

T

 
    (5.1) 

 

  

The energy produced by the energy recovery system until the first pressure constraint 

failure time can be denoted by the scalar  ,E   . One can also calculate the total 

energy of the flow passing through the pipes  without any turbines installed as shown in 

Equation (5.2). 
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    
1 1

, ,
STN N

M i i
k i

E Q k H k t  
 

     (5.2) 

  
 

where  is the specific weight of water, t is the time step, and  ,iQ k  and  ,iH k  

are the flow rate and the average total head in the pipe i  at the thk time step of the 

analysis, respectively.  A non-dimensional energy measure,  ,E   , can be defined as 

the ratio of the energy produced,  ,E    to the total energy of the flow, ME  as 

described in Equation (5.3). 

 

    ,
,

M

E
E

E

 
    (5.3) 

  
 

Since the main aim of the energy recovery system is defined as achieving as high energy 

production by the micro turbines as possible without violating the pressure constraint, the 

design of this system can be formulated as an optimization problem that can be 

mathematically expressed as  

 

 

  
 

maximize ,

. . , 1

o

f E

s t T


  

  

  

 (5.3) 

  
 

where o  is vector of predefined micro turbines used in the analysis. 
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Because any decision on the micro turbine operation at a given time step k affects the 

flow conditions in future time steps, this is a very complex and nonlinear optimization 

problem. In this study, Genetic Algorithm which imitates the evolutionary natural 

selection is utilized to find the best operation schedules  
 
for the candidate micro 

turbines. In this case a configuration of operation schedules of the turbines in the system 

is represented by an individual and a population of a number of individuals needs to be 

simulated. Each individual will have an objective function fitness value represented by 

the total energy obtained from the energy recovery system configuration. In a genetic 

algorithm a common way of dealing with candidate solutions that violate the constraints 

is to generate potential solutions without considering the constraints and then penalizing 

them by decreasing the goodness of the fitness function. In this respect, the fitness 

function of the genetic algorithm, GAf  is determined as in Equation (5.4). 

     , 1 ,GAf A T E        (5.4) 

  

where A  is a large penalty coefficient which is selected as 1000 in this study. According 

to Equation (5.4), the fitness value of an individual which violates the pressure constraint 

(i.e.  , 1T    ) will have a lower fitness value compared to an individual which 

satisfies pressure constraint at all times (i.e.  , 1T    ). The GAs will improve the 

initial population by reproducing new generations applying natural selection and 

population genetics such as, selection, cross over and mutation. In every generation, 

individuals are rated according to their fitness values obtained from the simulations. The 
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optimal configuration which has the highest energy production is reached in a finite 

number of generations. 

 

5.2.3 Smart Seeding of the Genetic Algorithm 

 

Genetic algorithms (GAs) are stochastic in nature and every step in a GA from generation 

of initial population to mutation has a random characteristic. Although this property helps 

GA get out of local optima, it creates individuals with irregular chromosomes which 

make it difficult to reach global optimum solution for some problems. Many researchers 

suggest that the solution to this problem lies at the initial population of the GA 

(Ponterosso and Fox 1999; Karci 2004; Maaranen, Miettinen et al. 2004; Maaranen, 

Miettinen et al. 2007; Saavedra-Moreno, Salcedo-Sanz et al. 2011).  They suggest that 

good feasible solution(s) can be seeded in the initial population of the elitist GA where a 

number of individuals which has the highest fitness value are always selected for the next 

generation. By this way the GA is initially supported by the information of a strong 

individual and it is forced to find fitter individuals. This process helps gain significant 

amount of time and it considerably improves the final best solution found by the GA 

using a reasonable population size. 

 

The most important step of this seeding process is to find a good feasible solution to the 

problem. Thus, the individual operational schedule of the turbine of this seeding process 

needs to satisfy pressure constraints all the time. In that sense, schedule which has a 
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completely open bypass valve throughout the simulation is a feasible solution for this 

problem since the micro turbine does not affect the system. However, this solution is not 

a good feasible solution for seeding purpose because the fitness value that is the energy 

generated by the micro turbine is zero for this individual. Therefore the seeding 

individual should have a fitness value as high as we can possibly find using a 

deterministic approach. Because the high energy generation increases the quality of our 

seed, we prefer longer turbine operation. At the same time, we have to satisfy pressure 

constraints in order to save the feasibility of the seed. Therefore we have to open the 

bypass valve whenever it is necessary. Sometimes we can eliminate a pressure violation 

in the system by simply opening the bypass valve at the pressure violation time. However 

this not always the case since the system may require a longer period of bypass valve 

opening in order to satisfy the pressure constraints. Thus an iterative procedure is 

proposed to find a good individual to seed the GA as described below. 

i. Assume full turbine operation 

ii. Run the simulation 

iii. Determine the first pressure failure time. 

iv. Open Bypass valve at this pressure failure time 

‐ If bypass valve is already open at this time, open the bypass valve one time 

step before.  

v. Update the operation schedule of the turbine. 

vi. Repeat steps 2 to 5 until a feasible solution which does not violate pressure 
constraint is reached. 
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This procedure is based on delaying the first pressure violation time by opening the 

bypass valve at or before that time. The final output of this seed generation algorithm is 

an operation schedule where the bypass valve is either completely open or completely 

closed. Then this individual operation schedule is seeded into the initial population of the 

GA and it will be further improved enabling us to reach the best solution that can be 

obtained in a reasonable amount of computational expense. 

 

5.3 Applications 

 

5.3.1 Study Area 

 

In this study, the proposed methodology is applied to the water distribution system 

serving the Dover Township area in New Jersey (Figure 5.2), which can be considered to 

be a typical small town in USA. This water distribution system is selected to test the 

proposed approach since it has been extensively studied and well documented (Maslia, 

Sautner et al. 2000; Maslia, Sautner et al. 2001; Aral, Guan et al. 2004; Aral, Guan et al. 

2004). This water supply network is composed of 16048 pipes connecting 14945 

junctions. 20 underground wells located at 8 inlet points serve as the main water supply 

of the system (Figure 5.2). Therefore, the energy required for the flow in the system is 

provided by the pumps located at these wells. 
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Figure 5.2 Dover Township water distribution system, Toms River, New Jersey. 

 

Previous studies have reported the average daily demand pattern for each month of the 

year and in this study we use these demand patterns consecutively to represent the yearly 

demand pattern as shown in Figure 5.3. Since one month is represented by a 24-hour time 

period, the simulation time required to represent one year is 288 hours. Similarly, the 

operational schedule to be determined for a micro turbine is composed of 288 hours (i.e. 

288STN   ). Every node in the water distribution system has a different base demand 

which will yield a different time series of demand flow rate when multiplied with the 

demand pattern in Figure 5.3. 
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Figure 5.3 Hourly demand pattern representing one year. 

 

Since the main goal of this study is to harvest the available excess energy in the system, it 

is important to assess the excess energy potential of the water distribution network. If the 

excess energy at a node is defined as the energy due to the pressure above a minimum 

limit, minP , then one can make a rough estimate of total excess energy dissipated at a 

demand node i  using Equation (5.5). 

    

 , ,
1

STN

i i k i k
k

EE q hdt q h t 


      (5.5) 

  
 

where ,i kq and ,i kh are the demand and pressure head above min /P   at node i  at thk  

time step respectively. The total excess energy dissipated in the system can be calculated 

as 
1

NN

i
i

TEE EE


  where NN  is the number of nodes. The total excess energy dissipated in 

the Dover Township water distribution system is estimated as 1.4 GWh/y. We can also 

calculate excess energy input to the system at the 8 inlet nodes utilizing Equation (5.5) 
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using the discharge passing through the inlet pipe and average pressure head above 

min /P   along the inlet pipe for ,i kq and ,i kh  respectively. The total excess energy input 

at the inlet pipes of the Dover Township water distribution system is estimated as 1.6 

GWh/y. Figure 5.4 shows the distribution of this energy at every inlet pipe. In this figure 

percentages indicate the excess energy contribution of the corresponding inlet location 

divided by the total excess energy input to the system. The numbers below the 

percentages indicate the value of annual excess energy input in GWh/y at the 

corresponding inlet location by setting the pressure limit as min 20 psiP  . This figure 

indicates that the two locations of highest excess energy supply are locations 3 and 4, and 

these two inlet points are investigated in this study as candidate micro turbine locations. 

The locations other than these inlet points in Figure 5.4 do not provide better energy 

recovery sites. The reason behind this is the fact that the micro turbine introduces a 

significant head loss at the pipe it is installed behaving as an obstacle to the flow and the 

flow prefers other routes with lower head losses in the network to reach its final 

destination distributing itself so that the flow at the turbine is very low. This result in a 

very low energy generation at the micro turbine since the energy produced at the turbine 

is an increasing function of flow rate. At the inlet locations however, since the flow does 

not have alternative routes, the flow through the turbine does not decrease as much as an 

ordinary location in the network resulting in a higher energy recovery. 
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Figure 5.4 Excess energy input distribution. 

 

5.3.2 Micro Turbines Used 

 

In this study, the two micro turbines which are pumps used as turbines (PATs) listed in 

Table 5.1 (Giugni, Fontana et al. 2009) are used. In this table, tbQ , tbH , tb  and  tbP  

stands for the flow rate, turbine head, efficiency and power generated at the best 

efficiency point in turbine mode, respectively. Derakhshan and Nourbakhsh (2008) have 

developed Equation (5.6) for turbine head and Equation (5.7) for turbine power 

estimations. These equations are utilized to plot Figure 5.5 and Figure 5.6 to show how 

the turbine head and turbine power changes with the flow rate for the two micro turbines.  

According to these figures, although NC 100-200 produces higher power for a given flow 

rate, it causes a higher head loss in the flow than NC 150-200.  This can be interpreted as 

a higher possibility of pressure violation. The head curves in Figure 5.5 are used in the 

hydrodynamic simulation as input to EPANET providing head loss vs. flow rate 
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information for the general purpose valve representing the micro turbine. The power 

curves in Figure 5.6 are used to calculate the energy produced by the micro turbine at a 

given time step. 

 

Table 5.1 Characteristics of micro turbines used. 

PAT  3 /tbQ m s   tbH m   %tb   tbP kW  

NC 100-200 0.05 19.81 79 7.82 

NC 150-200 0.13 18.22 80 18.27 
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Figure 5.5 Turbine head vs. flow rate curves of the micro turbines. 

 

 

Figure 5.6 Power vs. flow rate curves of the micro turbines.  
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5.4 Gravity Driven Water Distribution System 

 

In its original form, the Dover Township water distribution system is a pump driven 

network where the water is supplied by 20 pumps located at 8 pumping stations (Figure 

5.4). For comparison purposes, a hypothetical gravity driven network is modeled by 

removing all the pumping stations in Dover Township water distribution system and 

connecting 3 constant head reservoirs at locations 3, 4 and 7 with total heads of 320.4 ft, 

320.4 ft and 306 ft, respectively.  

 

The same optimization algorithm is applied to this hypothetical gravity driven water 

distribution system and the results are reported after the results of the original pump 

driven network in the coming sections. 

 

5.5 Results  

 

In this section, we first present the results of a preliminary analysis performed to decide 

the population size of the GA and demonstrate the effect of the smart seeding process on 

the final optimal result of the GA. Then, the optimization algorithm is applied to several 

energy recovery system configurations in pump driven network and energy budget of 

each is discussed and their economic and environmental impacts are reported. Next, the 

same analysis is performed for the gravity driven network. 
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5.5.1 Smart Seed vs. Non-Seeded GA Solutions and the Population Size  

 

In order to understand the decision process for the population size of the GA, we need to 

recall that the decision variable of our optimization algorithm is the hourly operation 

schedule of the micro turbine. Since our model simulates each month by a representative 

24 hour period, the operational schedule of the micro turbine is composed of 288 hours. 

Therefore, for a single turbine problem, each individual in the GA has a chromosome size 

of 288 bytes. This large chromosome size may require a large number of individuals, i.e. 

the population size. In order to observe the effect of population size on the final output of 

the GA, several population sizes with number of individuals 80, 160, 400 and 1000 are 

tested for the case NC 150-200 installation at location 3. Moreover, a smart seed for the 

GA is found and its fitness value is compared with the result of non-seeded GA results. In 

these test runs, the minimum pressure that needs to be satisfied is set as 20 psi. 

 

Figures 5.7, 5.8, 5.9 and 5.10 demonstrates the best operational schedules of the bypass 

valve of a single NC 150-200 installed at location 3 found by the GA with a population 

size of 80, 160, 400 and 1000 respectively. In these figures, a bypass valve opening of 1 

indicates a fully open bypass valve. A partially open bypass valve is indicated by a 

bypass valve opening value between 0 and 1, and a completely closed bypass valve is 

represented by the value 0. Figure 5.11 shows the operational schedule of the bypass 

valve found as the smart seed for the GA as explained in Section 5.2.3.  
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Figure 5.7 Best operational schedule found by the GA with a population size of 80 for 

the bypass valve of single NC 150-200 installed at location 3. 

 

 

Figure 5.8 Best operational schedule found by the GA with a population size of 160 for 

the bypass valve of single NC 150-200 installed at location 3. 
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Figure 5.9 Best operational schedule found by the GA with a population size of 400 for 

the bypass valve of single NC 150-200 installed at location 3. 

 

 

Figure 5.10 Best operational schedule found by the GA with a population size of 1000 

for the bypass valve of single NC 150-200 installed at location 3. 
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Figure 5.11 The operational schedule found as the smart seed for the bypass valve of 

single NC 150-200 installed at location 3. 

 

Figure 5.12 compares the fitness values of the individuals shown in Figures 5.7-5.11. In 

this figure the blue circles demonstrate how the best solution found by the non-seeded 

GA improves as the number of individuals in the population is increased and the red line 

indicates the fitness value of the individual found by the iterative process as the smart 

seed to the GA. It is clear from this figure that the population size needs to be increased 

significantly in order to find a solution which has a fitness value higher that the smart 

seed. As a result of these test runs, it is decided that smart seeded genetic algorithm with 

a population size of 1000 is used for the optimization of the operational schedules. By 

this way, the genetic algorithm starts with an individual which has considerably good 

fitness and it may improve this fitness value with a lower computational effort. 
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Figure 5.12 Fitness values of the smart seed and the GA outputs for different population 

sizes. 

5.5.2 Pump Driven Network 

 

In this study, 5 different configurations of energy recovery systems are proposed by 

installing single micro turbine (either NC100-200 or NC 150-200) at locations 3 and 4 

(Figure 5.4) and NC 150-200 at both locations. The optimal operational schedule which 

satisfies consumer demands without pressure violations and resulting energy gain are 

determined for each scenario. The minimum pressure that needs to be satisfied is set as 

20 psi.  
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Figures 5.13 and 5.14 show the optimal bypass valve operation schedules found for the 

single turbine case at location 3 for the micro turbines NC 100-200 and NC 150-200, 

respectively. When Figures 5.13 and 5.14 are compared, the effect of head curve of a 

turbine (Figure 5.5) on the optimal operational schedule can easily be seen since it is 

obvious that NC 100-200 which is a higher head turbine needs more bypass valve 

openings than NC 150-200 which is a lower head turbine. 

 

 

Figure 5.13 Operational scheduling for the bypass valve of single NC 100-200 installed 

at location 3. 

 



124 
 

 

Figure 5.14 Operational scheduling for the bypass valve of single NC 150-200 installed 

at location 3. 

 

Similar trend for the turbine head can be observed when Figures 5.15 and 5.16 which 

show the optimal operational schedules found for the single turbine case at location 4 for 

the micro turbines NC 100-200 and NC 150-200, respectively, are compared. These 

figures also provide the opportunity to compare the candidate locations of the micro 

turbines. For example, when Figures 5.13 and 5.15 are compared, one can say that since 

location 3 needs more bypass valve opening than location 4 for the same micro turbine, it 

is a more critical point for the operation of the water distribution system. Similar 

conclusion can be drawn when Figures 5.15 and 5.16 are compared. 
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Figure 5.15 Operational scheduling for the bypass valve of single NC 100-200 installed 

at location 4. 

 

 

Figure 5.16 Operational scheduling for the bypass valve of single NC 150-200 installed 

at location 4. 

 

The operating schedules of the bypass valves of individual micro turbines found for the 

double turbine case where one NC 100-200 is installed at location 3 and one NC 100-200 

is installed at location 4 (Figure 5.4) are reported in Figure 5.17. The operational 

schedules of the bypass valves for the similar case with the double turbine NC150200 are 

shown in Figure 5.18.  In these figures the operating schedules are obtained by the 

Genetic Algorithm seeded with an individual found by applying the iterative procedure to 
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find a seed for the bypass valve at Location 4 while the schedule of the bypass valve at 

Location 3 is the same as the smart seed found for the single turbine installed at this 

location. When Figures 5.17 and 5.18 are compared one can see that the high head micro 

turbines (NC100-200’s in Figure 5.17) require more bypass valve openings than the low 

head micro turbines (NC150-200’s in Figure 5.18). 

 

 

 

 

 

Figure 5.17 Operational scheduling for the bypass valves of two NC 100-200’s installed 

at locations 3 and 4. 

 

(a) Location 3 

(b) Location 4 
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Figure 5.18 Operational scheduling for the bypass valves of two NC 150-200’s installed 

at locations 3 and 4. 

 

In order to find the best energy recovery system among the 5 configurations described 

above, it is necessary to estimate the energy gained by each system. At this point, it 

should be noted that because Dover Township water distribution system is driven by 

pumps, it is important to track the amount of annual energy consumed by the pumps 

before and after the energy recovery system is installed. In its original state when there 

are no turbines installed, the pumps of this water distribution system consume 

(b) Location 4 

(a) Location 3 
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approximately 3.5 GWh/y of energy to maintain the flow. Depending on the 

configuration of the energy recovery system, the amount of this energy consumption may 

decrease or increase when the micro turbines are introduced to the water distribution 

network. Table 5.2 summarizes the energy budgets for the energy recovery system 

configurations considered. In this table, it can be seen that the energy used by the pumps 

has decreased after the energy recovery system is installed in all cases except for the NC 

150-200 installation at location 4 (Figure 5.4) which resulted in an increased energy 

consumption. Thus, in most of the cases, energy recovery system installation resulted in 

not only energy production by the micro turbine(s) but also energy savings at the pumps. 

This energy savings is most significant at location 3 where even though the energy 

recovered by the micro turbines are lower than that at location 4, the net energy gain is 

considerably higher due to the high energy savings at the pumps. Also, the installation of 

NC 150-220 at locations 3 and 4 resulted in the highest energy production by the turbines 

(89,209 kWh/y). However, this configuration did not save very high pumping energy and 

net energy gain was not as high as a single turbine installed at location 3. As a result, for 

this pump driven water distribution system, the best configuration which has the highest 

net energy gain is the double NC 100-200 installed at locations 3 and 4 with a net energy 

gain of 274,990 kWh/y. 

 

 

 



129 
 

Table 5.2 Energy budgets for the candidate energy recovery system configurations in 

pump driven network. 

 
Energy Recovery  

 
System Configuration 

 
  

 
Energy savings  

 
at the pumps 

 
(kWh/y) 

 

Energy recovered 
  

by the turbines 
  

(kWh/y) 

Net Energy 
  

Gain 
 

(kWh/y) 

NC 100-200 at Location 3 223,869 30,061 253,930 

NC 150-200 at Location 3 152,989 70,211 223,200 

NC 100-200 at Location 4 13,080 80,744 93,824 

NC 150-200 at Location 4 -27,162 63,597 36,435 

 
NC 100-200 at Locations 3 
 
and 4 

228,464 46,526 274,990 

 
 
NC 150-200 at Locations 3 
 
and 4 
 

132,681 89,209 221,890 

 

According to U.S. Energy Information Administration (USEIA 2012), the average annual 

electricity consumption of a U.S. residential utility customer was 11,496 kWh in 2010. 

This average energy consumption value can be used to estimate the economic 

significance of the candidate energy recovery systems as shown in Figure 5.19. In this 

figure, the blue, wider bars indicate the number of average American homes that can be 
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fed by the energy gained by utilizing a given energy recovery system. As expected from 

Table 5.2, the double NC 100-200’s installed at locations 3 and 4 support electricity 

consumption of the highest number (25) of average American homes.  Besides its 

economic effects, this energy recovery has important environmental benefits. U.S. 

Environmental Protection Agency (USEPA 2012) suggests that an emission factor of 

46.8956 10 metric tons CO2/kWh can be used to calculate the equivalencies for 

emissions reductions from energy efficiency or renewable energy programs. This 

emission factor is utilized to estimate the annual equivalent CO2 emissions reduction for 

each of the candidate energy recovery system as indicated by the thinner, red bars in 

Figure 5.19. The double NC 100-200’s installed at locations 3 and 4 result in the highest 

CO2 emissions reduction (190 tons/y). 

 

Figure 5.19 Economic and environmental impacts of the energy savings in pump driven 

network. 
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5.5.3 Gravity Driven Network 

 

The same analysis is performed on the gravity driven network as explained in section 1.4. 

Therefore all six energy recovery system configurations are tested in this this new 

hypothetical water distribution system. The constant head reservoirs supply steady source 

of energy to the network lowering the chance of pressure violations in case of micro 

turbine installation. As a result, several configurations such as single NC100200 or 

NC150200 and double NC150200 installed at locations 3 and 4 do not require operational 

schedules for the micro turbines. However, double NC100200 installed at locations 3 and 

4 cause pressure violations when operated continuously without scheduling. Thus an 

optimal operation schedule for the micro turbines is found for this configuration. In this 

operational schedule, NC100200 installed at location 3 can operate with bypass valve 

fully closed for the entire service period. However, NC100200 installed at location 4 

requires bypass valve openings as shown in Figure 5.20. 

 

Figure 5.20 Operational scheduling for the bypass valve of NC 100-200 installed at 

location 4 for the case of double NC100200 installed at locations 3 and 4. 
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In order to find the best energy recovery system configuration among the 6 alternatives 

tested in this study, the energy recovered by the micro turbines needs to be calculated. 

Table 5.3 presents the results of this energy recovery calculation. Here it needs to be 

noted that since the water distribution system has been converted into a hypothetical 

gravity driven network without pumps, the net energy gained by the recovery system is 

equal to the energy produced by the turbines. When Table 5.3 is examined it can be 

clearly seen that energy recovery by a single turbine installation in this three-reservoir 

system is not very high when compared with a double turbine energy recovery system. 

The reason behind this is the fact that a turbine installation at an inlet pipe increases the 

energy loss for the flow through that pipe causing a significant decrease in the pipe if the 

system can acquire the necessary flow from other inlet points to satisfy the demands. This 

significant decrease in the flow rate is reflected as significant decrease in the energy 

production. In a double turbine situation, since 2 of the 3 inlet pipes have significant 

increase in the head loss due to the micro turbines installed. This might have resulted in a 

significant decrease in the flow rate at the pipes where the turbines are installed if the 

system could acquire the necessary flow from one inlet pipe which is intact. However, 

one constant head reservoir is not enough to compensate the required flow rate. As a 

result, the conservation of mass principle necessitates that the flow rate through the inlet 

pipes do not decrease significantly. Thus, double turbine configurations have 

considerably high net energy gain as shown in Table 5.3.     
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Table 5.3 Energy budgets for the candidate energy recovery system configurations in 

gravity driven network. 

 
Energy Recovery System 

 
 Configuration 

 

Net Energy Gain
 

(kWh/y) 

 
NC 100-200 at Location 3 
 

66,669 

 
NC 150-200 at Location 3 
 

96,457 

 
NC 100-200 at Location 4 
 

42,757 

 
NC 150-200 at Location 4 
 

42,359 

 
NC 100-200 at Locations 3 and 4 
 

278,870 

 
NC 150-200 at Locations 3 and 4 
 

376,830 

 

When we look at the economic and environmental impacts of these energy recovery 

configurations (Figure 5.21), we can again see that energy recovery systems with two 

turbines can supply energy for significantly higher number of average American homes 

which results in higher reduction in carbon dioxide emissions when compared to single 

turbine energy recovery systems. In our best case scenario which is double NC150-200 

installed at locations 3 and 4, the energy production by the micro turbines is equal to the 

energy consumption of 33 average American homes and by utilizing this energy we can 

reduce the carbon dioxide emissions by 260 metric tons annually.   
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Figure 5.21 Economic and environmental impacts of the energy savings in pump driven 

network. 

 

5.6 Conclusions 

 

In this study, Genetic algorithms are used to find the optimal operating schedule of an 

energy recovery system in water distribution systems. The objective function of this 

optimization problem is formulated as the maximization of energy recovery at the micro 

turbines such that the consumer demands are always satisfied without pressure violations. 

The candidate locations for the energy recovery system are determined from the excess 

energy input distribution of the water supply system. For this study, two locations which 

have the highest excess energy inputs are selected. In order to demonstrate the effect of 
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the micro turbine used, two different turbines are tested. The proposed methodology is 

applied for different combinations of locations and turbine types.  

The optimization algorithm has successfully determined operational schedules for the 

energy recovery systems which never violate the pressure constraint. The results show 

that location and turbine type have significant effects on the optimal operation schedules. 

A high head turbine requires more bypass valve openings than a low head turbine and 

one location can be more critical in satisfying the pressure constraint than another 

location.  

Another important outcome of this study is the fact that the energy recovery system 

installed in pump driven networks may not only produce energy at the micro turbines but 

also decrease the energy consumption at the pumps depending on the location and the 

type of the micro turbines used. While some energy recovery systems may decrease 

energy consumption, some recovery systems may result in increased pump energy. In 

pump driven networks, the energy savings at the pumping stations constitute a significant 

portion of the net energy gain which eventually reveals the best configuration for the 

energy recovery system. 

 

Another conclusion can be the fact that results of this study demonstrate the important 

economic and environmental impacts of the energy recovery systems in water 

distribution networks. Even in the pump driven water distribution network serving a 

typical small town in USA, the energy savings can support the electricity consumption of 

more than 20 average U.S. homes corresponding to a reduction of 177 tons of CO2 
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emissions annually. In the gravity driven system, these numbers are increased to 33 

average American homes and 260 tons of CO2 reduction. These economic and 

environmental impact numbers will obviously increase for larger water distribution 

networks. 

 

The available excess energy potential of a water distribution system may vary 

significantly depending on the complexity and type of the driving force of the network. A 

large network may have higher consumer demands which require higher flow rates at the 

inlet locations increasing the energy generation at the times of turbine operation. In 

addition to the complexity, the driving force of the network significantly affects the 

energy gain from a water distribution system. In a gravity driven water distribution 

system, where the nature supplies the required energy for the flow, the available excess 

energy potential may be much higher than that of a pump driven network. It should also 

be noted that since the gravity driven network does not require any pumps, the only 

energy that need to be tracked is the energy produced at the turbines.   

 

The  results of this study are comparable with the results of another work (Giugni, 

Fontana et al. 2009) which is based on a gravity driven network where three energy 

recovery systems were proposed. The energy production of these three options ranged 

from 418.8 kWh/d to 821.6 kWh/d. In the current study, the highest net energy gain was 

found for NC 100-200 at location 3 as 695.7 kWh/d in pump driven network (Table 5.2). 
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In gravity driven network, the highest energy production was 1032.4 kWh/d (Table 5.3) 

by 2 NC150-200 installed at locations 3 and 4. 
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6 CHAPTER 6  

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

This thesis provides optimal design methodologies for real-time water quality monitoring 

systems in rivers and energy recovery systems in water distribution networks. Moreover, 

it presents a novel solution approach for the ill-posed problem of contaminant source 

location identification. Therefore, it focuses on the analysis of protection of fresh water 

resources and utilization of renewable energy sources using optimization algorithms.  

These objectives are the two of the most important and challenging engineering problems 

today and in the future. In sections below, general conclusions and directions for each 

research study covered in this thesis are presented. 

 

6.1 Real-Time Water Quality Monitoring Networks for River Systems 

 

In this study, a methodology has been developed for the optimal design of real-time 

monitoring networks in river systems (Telci, Nam et al. 2008; Telci, Nam et al. 2009). 

The design objectives are determined as the early detection time and the reliability of the 

monitoring system designed. These two criteria are essential to protect humans from 

adverse effects of exposure to harmful contaminants. Focusing on these two objectives, 

this study proposes a methodology that is based on the transient behavior of a random 

contamination event or multiple events in a river network. This model is based on the 



139 
 

hydrodynamics and the contaminant fate and transport characteristics of the river system 

that is under study. The information gathered from this analysis is used in an optimization 

model to identify the best monitoring locations in the river network in real time which 

would satisfy the two objectives identified above. In this study, enumeration and Genetic 

Algorithms were used as the optimization tools.  

 

 As an important clue for the future direction of this research, this work has inspired a 

recent study (Park, Kim et al. 2010) which proposes another optimization tool (Nested 

Partitions Method) for the analysis of this problem which was the topic of another PhD 

thesis. This new research shows that the subject of water quality monitoring design has 

many aspects open to interdisciplinary research. In addition to application of new 

optimization tools, new objectives can be developed for these monitoring systems as 

many monitoring projects may serve for different purposes. For example, an optimal 

monitoring system can be designed to observe the effect of climate change and land use 

on hydrology and pollutant transport. It should be noted that any new objective function 

can be easily implemented in the optimization algorithm presented in this thesis. It is 

possible to extend this optimization problem to other environments such as estuaries as 

one of my future research topics. In this case, the contaminant transport model used in 

this thesis (EPA SWMM) needs to be replaced with another model developed for 

estuaries. 
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6.2 Identification of Contaminant Source Locations in River Systems  

 

Once the real-time monitoring stations are optimally located in the river system, they 

provide continuous information about the quality of the river water. This information can 

be used for long term management of the river system. In this research (Telci and Aral 

2011), it is shown that continuous observations at the monitoring stations can be used for 

rapid identification of contaminant source locations. The methodology proposed in this 

study parameterizes the breakthrough curve of the contamination observed at a 

monitoring station and utilizes a probabilistic classification routine which associates these 

observations with one or more of the candidate spill locations in the river network.  

 

In future studies, this research topic can be extended to other environments such as 

groundwater, lakes, estuaries and air where a real-time monitoring system is providing 

continuous observations. Moreover, the methodology proposed in this thesis is so flexible 

that new parameters can be easily included in the classification algorithm which may 

increase the performance of the approach. 

 

6.3 Renewable Energy Production from Water Distribution Systems 

 

This research described in Chapter 5 is based on harvesting the available excess energy in 

water distribution systems inevitably produced while maintaining adequate pressures 
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throughout the network.  Therefore the energy produced by the proposed system is pure 

green energy free from any environmental side effects. This energy recovery is possible 

by the utilization of mini and micro hydroelectric turbines. In this study, an optimization 

approach for the design of energy recovery systems in water distribution networks is 

developed. This methodology is based on finding the best locations for micro 

hydroelectric plants in the network to recover the excess energy. Due to the unsteady 

nature of flow in water distribution networks, the proposed methodology also determines 

optimum operation schedules for the micro turbines. The objective of the optimization 

algorithm is determined as the net annual energy gain from the energy recovery system. 

Genetic Algorithm supported by a “Smart Seeding” procedure is used to solve this 

complex optimization problem. In this approach, which significantly reduces the 

computational effort, a good feasible solution is supplied to the genetic algorithm as an 

individual of the initial population. The energy production from water distribution 

systems can vary significantly as the size, complexity and driving mechanism of the flow 

change. The proposed methodology is tested in pump and gravity driven networks and 

the results are compared and it is concluded that the gravity driven networks are more 

promising for energy production than the energy production. This comparison also 

showed that the proposed approach is not only provides an optimal design for the energy 

recovery system but also evaluates the available excess energy potential of a given water 

distribution system.  

 

One of the essential inputs required by the methodology proposed in this thesis are the 

hourly demand patterns of the outlet nodes during the service period. This information 
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may not be available for some water distribution systems. Therefore as a future step, the 

design approach outlined in this thesis can be modified such that one or more 

measureable parameters such as pressures at specific locations in the water distribution 

networks are implemented to find the real-time optimal operation patterns of the micro 

turbines.  In this case, the demand patterns can be regarded as stochastic parameters and a 

probabilistic approach outlined in Chapter 4 can be implemented to solve this new design 

problem.    In addition, this work can be extended to other environments such as river 

networks where micro hydro power applications are recently growing. In addition to 

these micro hydro power applications, a future research topic can be optimal integration 

of new renewable energy sources to the existing power grid. Since these renewable 

energy sources depend on natural inputs such as wind and solar energy, their energy 

output will have a stochastic nature. The design of the adaptation tools of existing power 

grid to these new energy sources such as pump storage units will require stochastic 

optimization techniques and has not been studied in an integrated manner. 
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