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Abstract

We consider the problem of reliably operating a microgrid with solar generation and pumped
hydroelectric storage. We show that reliable operation is possible if storage equipment is
sufficiently flexible and storage control is sufficiently robust to solar variability. Pumped stor-
age flexibility can be achieved through a ternary configuration; this enables rapid switching
between pumping and generating modes. Controller robustness can be achieved through a
novel control synthesis method based on convex optimization and resampled historical solar
data. The proposed equipment and controller perform well in simulations including twenty
months of real solar data at five minute resolution. These results highlight the potential of
pumped storage to enable reliable integration of wind and solar power into the grid.

1 Introduction

In many regions and applications, wind and solar power are now economically attractive.
However, wind and solar power are variable and uncertain. This complicates grid operators’
task of continually balancing electricity supply and demand. More flexibility is needed to
reliably integrate random renewables. This need is especially pronounced in microgrids,
which have low inertia and little spatial resource diversity. In this project, we investigate the
potential of pumped storage to balance renewable microgrids. We approach this question
through a challenging case study.

1.1 Case study

The state of Hawai’i imports 85% of its food. Imported fossil fuels supply 90% of its energy.
Hawai’ian electricity is the most expensive in the U.S., costing about 42 ¢/kWh. Meanwhile,
Hawai’i has excellent resources for agriculture and renewable energy. These facts make local,
sustainable food and energy projects in Hawai’i economically and environmentally attractive.
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Hydropower is particularly attractive in Hawai’i due to the state’s extensive irrigation
infrastructure. This infrastructure once supported sugar plantations, but has been under-
utilized since the sugar industry collapsed in the 1990s. In some areas, the state’s revenues
from water use are insufficient to fund needed infrastructure maintenance. This jeopardizes
marginalized communities in remote areas that depend on irrigation infrastructure. Revital-
izing irrigation infrastructure for hydropower could increase state revenues, funding needing
maintenance while providing sustainable energy.

In this project, we study the case of a sustainable farming community on the Big Island
of Hawai’i. Our collaborators, a group of native Hawai’ian farmers, are interested in building
a shared commercial kitchen. The proposed location is close to farms but far from the elec-
tricity distribution network. For this reason, our collaborators are interested in the technical
feasibility of powering the kitchen via a microgrid. Renewable generation is preferred.

The location has ample sunshine, steep hills and unused reservoirs at several elevations.
There is an irrigation ditch nearby, but water withdrawals are prohibitively expensive for
direct hydropower generation. We propose solar photovoltaics as the primary energy source.
In [1], Ma et al. showed that in islanded microgrids, lifetime costs of pumped storage are lower
than batteries by a factor of two to three. Our site-specific economic analysis supports this
conclusion (see the supporting documents Hydropower on the Lower Hamakua Ditch and
Microgrid Farming Communities in Hawai’i for more discussion). Therefore, we propose
pumped storage for grid balancing.

1.2 Microgrid components

Supply. Electricity supply comes from a solar photovoltaic array sized to meet energy
demand after adjusting for storage losses. We simulate the array power output by resampling
historical data provided by a Hawai’ian collaborator at a nearby facility. The data include
the power output from five solar arrays over four months at five minute resolution.

Demand. Electricity demand comes from cooling and ventilating the commercial kitchen
and powering its refrigerators and other appliances. We simulate this demand using the
Matlab bldg toolbox, a nonlinear testbed that includes the random effects of weather and
occupant behavior. [2] Demand is about 14 kW on average and 22 kW at peak.

Storage. We consider ternary pumped storage: upper and lower reservoirs, a hydraulic
bypass, and a Pelton impulse turbine suitable for our high-head, low-flow application. Fig-
ure 1 illustrates the system. The ternary configuration enables simultaneous pumping and
generation. This has mathematical properties that facilitate control. It also enables transi-
tion times between pure-pumping and pure-generation modes on the order of thirty seconds,
compared to the several minutes required for transitions in reversible-flow systems. [3, 4]
This has advantages in our solar microgrid, where generation can fluctuate rapidly due to
fast-moving clouds.
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Figure 1: A ternary pumped storage system. Blue lines represent water flow. A single
shaft (black) connects the motor/generator, turbine, and pump. This setup enables rapid
switching between pumping and generating.

2 Microgrid control

Following the control hierarchy described in [5], we restrict our attention to secondary control
(time steps on the order of minutes). We assume that primary control (time steps of seconds
or faster) is provided by a fast feedback controller. Primary actuation could come from
variable speed drives on the pumped storage machinery or from a small battery, capacitor
or flywheel.

The secondary storage control problem is to decide the uphill and downhill water flows
in order to robustly maintain the power and energy imbalances within the capacities of
the primary balancing equipment. The secondary controller must also respect capacity
constraints on the volume of water stored and the flow rates through the pump and generator.

2.1 Dynamics

We assume that the pumped storage is a closed system, so the total volume of water is
conserved. The storage state can therefore be characterized by x1 (m3), the volume of water
in the upper reservoir. In terms of the uphill and downhill water flows u1 and u2 (m3/s), the
storage dynamics are

x1(t+ 1) = x1(t) + ∆t(u1(t)− u2(t)), t = 0, . . . , T − 1. (1)

Here t indexes discrete time with time step ∆t and horizon T . We assume perfect state
information is available.

We seek to balance the power supply

s(t) = ηgρghu2(t)

and demand
d(t) = w(t) + ρghu1(t)/ηp,
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both instantaneously and on average. To do so, we keep track of the instantaneous shortfall

y(t) = d(t)− s(t)

and the cumulative shortfall x2 (kWh). The cumulative shortfall dynamics are

x2(t+ 1) = x2(t) + ∆ty(t), t = 0, . . . , T − 1. (2)

In the equations above, ρ = 1000 kg/m3 is the density of water, g = 9.8 m/s2 is the
acceleration of gravity, h (km) is the height from the lower to upper reservoir and w (kW) is
the net load, i.e., the load minus solar generation. We assume that the pump and generator
efficiencies, ηp, ηg ∈ (0, 1], are approximately constant.

The dynamics (1) and (2) can be written compactly as

x = Ax(0) +Bu+ Cw.

Here A, B and C are suitably defined matrices. The state, control and disturbance trajec-
tories are

x = (x(1), . . . , x(T ))

u = (u(0), . . . , u(T − 1))

w = (w(0), . . . , w(T − 1)).

2.2 Constraints

The storage system has volume, pumping and generation constraints:

0 ≤ x1(t) ≤ x̄1, t = 1, . . . , T

0 ≤ u1(t) ≤ ū1, t = 0, . . . , T − 1

0 ≤ u2(t) ≤ ū2, t = 0, . . . , T − 1.

Here x̄1 (m3) is the upper reservoir volume and ū1 and ū2 (m3/s) are the uphill and downhill
flow limits. These constraints can be written as

g(u) � 0,

where g : R2T → R6T is defined by

g(u) =


−
(
I ⊗

[
1 0

])
(Ax(0) +Bu)(

I ⊗
[
1 0

])
(Ax(0) +Bu)− x̄11
−u

u− 1⊗
[
ū1
ū2

]
 .

In the above, I is an identity matrix, 1 is a vector of ones and ⊗ denotes the Kronecker
product.
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Many storage systems, such as batteries or non-ternary pumped storage, prohibit simul-
taneous charging and discharging. This gives rise to a constraint of the form

u1(t)u2(t) = 0.

This nonlinear equality constraint is nonconvex. Imposing it greatly complicates optimiza-
tion, requiring different algorithms and making guarantees of global optimality unavailable.
The ternary pumped storage configuration eliminates these complications by allowing simul-
taneous charging and discharging.

2.3 Cost

As we are interested in limiting the required power and energy capacities of the primary
balancing equipment, we penalize a weighted sum of the maximum instantaneous and cu-
mulative imbalances over the control horizon,

‖y‖∞ + γ ‖x2‖∞ .

Here y = (y(1), . . . , y(T )) is the instantaneous shortfall trajectory and x2 = (x2(1), . . . , x2(T ))
is the cumulative shortfall trajectory. The tunable parameter γ governs the tradeoff between
the power and energy shortfalls. It has units of inverse hours. It can be interpreted as the
ratio of a $/kWh energy price to a $/kW power price. In terms of the control and disturbance
trajectories, the cost can be written as

f(u,w) =
∥∥w + ρgh

(
I ⊗

[
1/ηp −ηg

])
u
∥∥
∞

+ γ
∥∥(I ⊗ [0 1

])
(Ax(0) +Bu+ Cw)

∥∥
∞ .

2.4 Risk measure

The cost f(u,w) depends on the disturbance w. Similarly, when the control is decided based
on feedback, the constraint g(u) depends implicitly on w through u. The goals of minimizing
f(u,w) and constraining g(u) are therefore ambiguous: do we wish to accomplish them for
a particular realization of w, in expectation with respect to the distribution of w, for all
possible w, or something else? Answering this question amounts to deciding how to measure
risk; see [6] for details.

We choose to measure risk by the worst-case value over all possible net load trajectories.
This is a coherent measure of risk in the sense of [7]. We investigated other risk measures,
such as the expected value and conditional value at risk [8, 9], but found that the worst-case
value gave the best performance for this problem.

5



2.5 Problem statement

In the general framework of control under uncertainty, the optimization is over causal state
feedback policies π = (π0, . . . , πT−1) such that

u = π(x) =


π0(x(0))

π1(x(0), x(1))
...

πT−1(x(0), x(1), . . . , x(T − 1))

 .
The control problem, therefore, is to

minimize
π

maxw f(u,w)

subject to maxw g(u) � 0
x = Ax(0) +Bu+ Cw
u = π(x).

(3)

2.6 Approximate solution

Problem 3 is intractable for three reasons. First, it is nonconvex due to the dependence of u
on x and x on u. Second, the feasible region (the space of all causal state feedback policies)
is infinite-dimensional. Third, the distribution of the net load w is unknown. To arrive at a
tractable problem, we use two approximations: (1) optimizing over finite-dimensional, affine
disturbance feedback policies, and (2) relaxing the risk measure to the worst-case value over
N randomly sampled net load trajectories.

2.6.1 Policy parameterization

Because state feedback policies are vector-valued functions, stochastic control problems are
infinite-dimensional in general. To arrive at a finite-dimensional problem, we reparameterize
the control law as affine state feedback,

u = v +Kx.

Causality implies that the matrix K is strictly block lower triangular.
This parameterization results in a nonconvex optimization problem. Convexity can be

achieved by reparameterizing the control law as affine disturbance feedback, as in [10]:

u = q + Q̃w.

The affine state and disturbance feedback policies are equivalent in the following sense.
Recalling that x = Ax(0) +Bu+ Cw, and assuming that I −KB is nonsingular, we have

u = v +Kx = v +K(Ax(0) +Bu+ Cw)

=⇒ u = (I −KB)−1(v +K(Ax(0) + Cw))

= (I −KB)−1(v +KAx(0)) + (I −KB)−1Cw

= q + Q̃w.
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This is related to the Q or Youla parameterization; see [11] for discussion.
Optimizing over the matrix Q̃ ∈ R2T×T introduces 2T 2 decision variables. To reduce

the dimension of the resulting optimization problem, we further restrict the search space to
policies with a memory of a single time step, so that

u(0) = q(0)

u(t) = q(t) +Qw(t− 1), t = 1, . . . , T − 1.
(4)

We investigated affine policies with longer memory, but found that they did not improve
performance much over the one-stage policy.

With this parameterization, we arrive at an approximate problem:

minimize
q,Q

maxw f(u,w)

subject to maxw g(u) � 0
u(0) = q(0)
u(t) = q(t) +Qw(t− 1), t = 1, . . . , T − 1.

(5)

2.6.2 Sampling

Because the distribution of the net load w is unknown, the maxima in problem (5) cannot be
computed. We approximate them by generating sample disturbance trajectories w1, . . . , wN

from the distribution of w, then solving the following problem:

minimize
q,Q

max
{
f(u1, w1), . . . , f(uN , wN)

}
subject to g(ui) � 0, i = 1, . . . , N

ui(0) = q(0), i = 1, . . . , N
ui(t) = q(t) +Qwi(t− 1), t = 1, . . . , T − 1, i = 1, . . . , N.

(6)

This approach is related to sample-average approximation (see [11–14]) and other scenario
approximations for optimization under uncertainty (see [15–17]).

2.7 Complexity

Because g and f(·, w) are convex functions and the pointwise maximum preserves convexity,
problem (6) is an instance of convex programming. The 2(T + 1) decision variables are
the elements of q ∈ R2T and Q ∈ R2. The equality constraints can be straightforwardly
eliminated, leaving 6NT inequality constraints. Although this is a large-scale problem, it
can be solved to global optimality in polynomial time using, e.g., interior-point methods.
Such methods typically require a few tens of iterations to converge to a solution. The main
work in each iteration is evaluating the objective and constraint functions and their first and
second derivatives; this takes on the order of NT 3 operations. The cubic dependence on
T makes long-horizon problems challenging to solve; this suggests that a model predictive
control strategy with a truncated horizon might be effective. We note, however, that problem
(6) can be solved for q and Q offline. No online optimization is necessary. Online evaluation
of the policy (4) is extremely efficient.
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Figure 2: Histogram of the total cost, a weighted sum of the worst-case power and energy
imbalances, over 550 one-day Monte Carlo simulations with five minute time steps. The
worst imbalances were about 20 kW and 10 kWh.

3 Simulation

We simulated controller performance over each of the M = 550 days in the historical solar
dataset. We used a time step of ∆t = 5 minutes, giving a horizon of T = 288. We
investigated the sensitivity of controller performance to the number of training samples.
We found that N = 20 gave a good trade-off between optimization time and controller
performance. Similarly, we found that a value of γ = 1/∆t gave a good trade-off between
power and energy balancing. Optimization modeling was done in the Matlab CVX toolbox
[18]. Optimization problems were solved in SDPT3. [19]

The physical parameters in the simulations are h = 40 m, 90% efficiencies for the pump
and generator, reservoir volumes of about 3.5 thousand m3 (about 375 kWh of energy stor-
age), and pump and generator flow capacities of 0.14 m3/s (about 60 kW). These capacities
were chosen in an ad hoc way; we expect that the storage, pump and generator could be
downsized significantly with no impact on performance. In all Monte Carlo runs, an initial
storage state of 50% was used.

Figure 2 shows a total cost histogram over all the Monte Carlo runs. The worst-case power
imbalance, over all 550 net load scenarios, was about 20 kW. The worst-case energy imbalance
was about 10 kWh. This suggests that relatively small primary balancing equipment is
sufficient.

Figures 3 and 4 show the water and power trajectories over a typical Monte Carlo run.
Balancing is essentially perfect when the sun is down; the controller is easily able to balance
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Figure 3: Water trajectories in a typical Monte Carlo run. The controller uses the simulta-
neous pumping and generating ability of the ternary storage system to help balance net load
fluctuations. Flow and volume constraints are easily respected, suggesting that the system
could be significantly downsized.

the relatively small fluctuations in load. However, when the sun is up on this partly cloudy
day, cloud motion makes the solar power output highly volatile. The secondary controller
can balance some, but not all, of these solar fluctuations. The remaining balancing must be
performed at the primary control level by, for example, feedback control of variable speed
pumped storage equipment.

4 Conclusion

In this project, we explored secondary control of a microgrid with solar photovoltaic gener-
ation and pumped storage. We formulated a robust optimal control problem and used two
approximations to enable tractable, if suboptimal, control synthesis. The resulting controller
has an affine disturbance feedback form. It respects hard equipment constraints and min-
imizes the worst-case power and energy imbalances. The controller was validated through
Monte Carlo simulation over 550 days of real solar data with five minute resolution.

The practical impact of this work is to demonstrate that pumped storage can balance the
variability of solar power. On the hardware side, this is enabled by the highly flexible and
controllable ternary pumped storage configuration. The ternary configuration enables rapid
switching between pumping and generating modes in order to balance solar fluctuations. In
our application, the estimated lifetime cost of pumped storage is lower than that of batteries
by a factor of two to three. On the software side, reliable operation is enabled by paying
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Figure 4: Power trajectories in the Monte Carlo run in Figure 3. The power imbalance is
largest when the net load is most volatile due to large, rapid solar fluctuations.

careful attention to the uncertainty and volatility of solar power. The control design method
we proposed, which uses convex optimization and resampled historical data, has applications
beyond this problem.

There are a number of opportunities to extend this work. First, primary microgrid
control (time steps of seconds or faster) via variable speed pumped hydroelectric equipment
could be investigated. Second, the robust affine disturbance feedback policy used here for
secondary control could be compared to nonlinear control strategies such as model predictive
control. Third, the problem of combined equipment sizing and control synthesis could be
investigated.
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