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Abstract 106 

The magnitude and frequency of hydro-meteorological extremes are expected to increase in a 107 

changing environment that threaten the security of US energy-water assets. This includes 108 

probable maximum precipitation (PMP) and probable maximum flood (PMF) which are used as 109 

hydraulic design standards for critical infrastructures such as major hydropower reservoirs and 110 

nuclear power plants. To assess the potential flood hazards due to PMP/PMF, an integrated high-111 

resolution process-based hydro-meteorologic modeling framework was utilized to develop 112 

ensemble-based probabilistic flood maps based on best-available historic observations and future 113 

climate projections. A graphical process unit accelerated 2-dimensional hydrodynamic model 114 

was used to simulate the surface inundation areas corresponding to a total of 120 PMF 115 

hydrographs. These ensemble-based PMF maps were compared with flood maps obtained from 116 

the conventional deterministic PMP/PMF approach, revealing added information of conditional 117 

probability of flooding. Further, a relative sensitivity test was conducted to explore the effects of 118 

various factors in the framework such as meteorological forcings, antecedent hydrologic 119 

conditions, reservoir storage, and flood model input resolution and parameters. The proposed 120 

framework better illustrates the uncertainties associated with model inputs, parameterization and 121 

hydro-meteorological factors allowing more informed decision-making for future emergency 122 

preparation. 123 

Keywords: Probable maximum precipitation (PMP), Probable maximum flood (PMF), 124 

Graphical Processing Units (GPU)  125 



5 
 

1. Introduction 126 

Floods are one of the most destructive natural hazard causing deaths and damages to 127 

infrastructures worldwide. The United States (US) alone has observed 29 billion-dollar scale 128 

flood events in the period of 1980–2018 with a total of 543 deaths and roughly 122 billion 129 

dollars inflation adjusted loss (NCEI, 2018). The increasing frequency and magnitude of flood 130 

events under a changing climate, land use land cover and population require better predictability 131 

and preparedness towards flood hazards. The flood inundation maps serve as a critical input to 132 

flood risk assessments and enable development of informed floodplain management and 133 

mitigation strategies. In the US, Federal Emergency Management Agency (FEMA) utilize 134 

hydrologic and hydraulic models to delineate flood inundation zones associated with 1% and 135 

0.2% annual exceedance probability (AEP) (or 100-year and 500-year return period) to support 136 

the National Flood Insurance Program (FEMA, 2018). For critical energy-water infrastructures 137 

including major hydropower dams and nuclear power plants, the even rarer events (AEP < 0.2%) 138 

or probable maximum flood (PMF) are the focus. Similar inundation maps developed for PMF-139 

scale events may serve as a useful tool to evaluate the vulnerability of critical infrastructures 140 

under the worst case flooding scenario, as well as to identify regions with minimum flooding 141 

likelihood to support future site selection. 142 

A general procedure to prepare flood inundation maps (hereinafter referred as “modeling 143 

chain”) associated with PMF involves: probable maximum precipitation (PMP) estimation, 144 

followed by hydrologic simulation, and hydrodynamic/hydraulics modeling. Since the current 145 

practice of PMP/PMF assessment focuses on estimating the single deterministic maximum 146 

precipitation and streamflow event (that could occur under a series of adverse hydro-147 

meteorological conditions), the conventional PMF inundation maps are also deterministic in 148 
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nature. However, deterministic maps would inevitably refrain the decision makers or planners 149 

from the underlying uncertainties, given the binary (wet or dry) representation of the resulting 150 

flood inundation maps. While the advanced deterministic maps employ process based hydrologic 151 

and hydraulics model calibrated to historic events (Di Baldassarre et al., 2010), these maps are 152 

unable to capture the uncertainties arising from various sources in the modeling chain such as 153 

inaccurate input data, boundary conditions, model structure, and model parameterization 154 

(Alfonso et al., 2016; Di Baldassarre et al., 2010). Therefore, the values and potential of 155 

probabilistic flood maps (PFMs) are now highlighted (Alfonso et al., 2016; Di Baldassarre et al., 156 

2010; Papaioannou et al., 2017). Recent advances in computational power has allowed the use of 157 

computationally intensive hydrologic-hydraulics models to develop PFM through multi-158 

ensemble simulation (Neal et al., 2013). The uncertainty characterization may be performed at 159 

various stages of modeling chain by varying factors such as precipitation (Caseri et al., 2016), 160 

spatiotemporal rainfall variability (Jenkins et al., 2017; Nuswantoro et al., 2016; Zischg et al., 161 

2018), spatial dependence of flow from tributaries (Neal et al., 2013; Pattison et al., 2014), 162 

hydrologic model parameters or inputs (Domeneghetti et al., 2013), hydraulic model types 163 

(Papaioannou et al., 2016), hydraulic model roughness coefficient (Papaioannou et al., 2017), 164 

and different digital elevation models and observational data sets (Giustarini et al., 2016; 165 

Papaioannou et al., 2016). 166 

While a few studies have focused on the development of flood inundation maps for the 167 

largest historic events (e.g., Pedrozo‐Acuña et al., 2015) or for events with return period ranging 168 

from hundreds (Smemoe et al., 2007) to thousands of years (Büchele et al., 2006; Prime et al., 169 

2016), studies evaluating flood inundation maps for rare hydroclimate extreme events such as 170 

PMP/PMF are limited (Zischg et al., 2018). Further, recent studies have suggested the sensitivity 171 
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of PMP/PMF in a warming environment (e.g., Kunkel et al., 2013; Beauchamp et al., 2013; 172 

Rousseau et al., 2014; Stratz and Hossain, 2014; Klein et al., 2016; Rastogi et al., 2017; 173 

Gangrade et al., 2018) and challenged the deterministic treatment of PMP/PMF. It has also been 174 

suggested that both epistemic and aleatoric uncertainties involved in the estimation of PMP 175 

(Micovic et al., 2015). For instance, PMP and PMF estimates are often derived for a point 176 

location of interest without considering variability originating from spatiotemporal rainfall 177 

distribution or watershed heterogeneity. Through Monte Carlo simulation, Zischg et al. (2018) 178 

demonstrated that the spatiotemporal distribution of PMP has significant effects on the resulting 179 

PMF inundation maps. Other factors such as antecedent soil moisture, meteorological forcings, 180 

land use landcover and reservoir operation (Gangrade et al., 2018) may introduce further 181 

uncertainties to the estimated PMF and consequently the resulting surface inundation area. 182 

Moving forward, it is of critical importance to advance our concept and practice from the 183 

conventional, deterministic treatment of PMP/PMF to an ensemble-based, probabilistic flood 184 

mapping approach to better analyze and quantify the vulnerability of critical energy-water 185 

infrastructures in a changing environment. 186 

In this study, building upon our prior works on PMP/PMF simulations (Rastogi et al., 2017; 187 

Gangrade et al., 2018), we present a high-resolution, process-based, hydro-meteorological 188 

modeling framework to produce probabilistic flood inundation maps for PMF. The main 189 

objectives of the study are: (1) employ an ensemble-based approach to translate uncertainties 190 

associated with PMP to flood inundation maps, (2) prepare flood inundation probability maps 191 

illustrating uncertainties associated in the flood hazard modeling chain for PMF, and (3) quantify 192 

the potential impacts of environmental change on the inundation areas of PMF. The study area 193 

includes areas immediately upstream and downstream of the second largest dam (by maximum 194 
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storage capacity in Alabama Coosa Tallapoosa River Basin), Allatoona Dam, in Georgia, US. 195 

For PMP, we used an ensemble of 120 storms simulated by the Weather Research Forecasting 196 

model (WRF; Skamarock et al., 2008), driven by both reanalysis and climate projection forcings 197 

using the approach as described by Rastogi et al. (2017). These PMP storms were then used to 198 

simulate PMF through a high resolution Distributed Hydrologic Soil Vegetation Model 199 

(DHSVM; Wigmosta et al., 1994) as described in Gangrade et al. (2018). The ensemble of PMF 200 

hydrographs was further used to drive a high-resolution, Graphics Processing Unit (GPU) 201 

accelerated 2-dimensional dynamic wave flood model (Flood2D-GPU; Kalyanapu et al., 2011) 202 

to simulate the spatiotemporal evolution of PMF and to develop the ensemble-based probabilistic 203 

flood maps. Apart from better showing uncertainties (as opposed to the deterministic approach), 204 

the ensemble-based flood mapping approach allows us to better visualize the potential impacts of 205 

PMF through a more intuitive manner. The study also includes a relative sensitivity experiment 206 

to evaluate the sensitivity of various factors in the modeling chain including inputs such as 207 

precipitation, hydrologic model antecedent conditions, and hydraulic model parameters. 208 

This paper is structured as follows: Section 2 introduces the overall method, data, and study 209 

area; Section 3 illustrates and describes results; and Section 4 presents a summary and the 210 

conclusion of this study. 211 

2. Methods 212 

2.1 Study Area 213 

Our study area consists of Etowah watershed, located in northwestern Georgia, United States. 214 

The Etowah watershed is an eight-digit hydrologic unit (HUC08) with an approximate drainage 215 

area of 4821 km2 (1861 mi2; Figure 1) and is a part of Alabama-Coosa-Tallapoosa River Basin. 216 

It drains parts of 15 counties of Georgia with major urban areas including city of Cartersville and 217 
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Atlanta’s metropolitan areas such as Woodstock, Marietta and Alpharetta. The Etowah 218 

watershed includes a large multi-purpose reservoir, Allatoona Lake and Dam, owned and 219 

operated by the United States Army Corps of Engineers (USACE), with a maximum storage 220 

capacity of roughly 826.5 million m3. While the headwaters of Etowah Watershed include 221 

mountainous areas (such as Piedmont mountains), the topography of the rest of the watershed is 222 

moderate with the elevation ranges from ~176 m (577 ft) to 1,147 m (3,763 ft) based on the 223 

United States Geological Survey (USGS) National Elevation Dataset (NED; Gesch et al., 2002). 224 

The region receives precipitation of roughly 1,336 mm per year predominantly in the form of 225 

rainfall, with light snowfall in the headwater region. The major soil types include sandy loam 226 

and silty loam. As per National Land Cover Database (NLCD), 61% of the basin is covered by 227 

forests, 18.5 percent under small vegetation, and 18.5 percent fall under developed category.  228 

[Figure 1] 229 

The meteorological and hydrologic simulations were conducted for the entire Etowah 230 

Watershed, while the flood (hydraulic) simulations were conducted for two selected regions 231 

upstream (ME01) and immediate downstream (ME02) areas of Allatoona Dam (Figure 1). These 232 

areas were selected such that it includes urban areas of Atlanta metropolitan area and city of 233 

Cartersville. The computational domains for Flood2D-GPU for both regions ME01 and ME02 234 

are larger than the area of interest, with corresponding area of 358 km2 and 507 km2. The 235 

computational domains are selected larger than the area of interest to avoid any potential 236 

backwater effects and computational domain boundary artefacts. 237 

2.2 Modeling Framework  238 

This study utilizes an ensemble based, high-resolution process-based modeling framework to 239 

develop flood inundation maps associated with probable maximum flood estimates. The main 240 



10 
 

steps involve 1) simulation of PMP 2) simulation of PMF hydrographs and, 3) simulation of 241 

PMF flood maps. A brief overview is provided below: 242 

2.2.1 Simulation of PMP 243 

The PMP simulation was performed for an ensemble of 120 moisture-maximized storms by 244 

Rastogi et al. (2017) using a WRF version 3.6, a mesoscale numerical weather model, running 245 

using a double two-way nested domain at 9 km and 3 km horizontal spacing. The boundary 246 

forcings for WRF simulations included both Climate Forecast System Reanalysis I (CFSR; Saha 247 

et al., 2010) and Community Climate System Model version 4 (CCSM4; Gent et al., 2011). The 248 

storms include four sets: 249 

(1) CFSR-CT: Controlled simulation that includes the 30 largest historic storms during the 250 

1981–2011 historic period driven by CFSR reanalysis. 251 

(2) CCSM4-BL: Baseline simulation that includes the 30 largest storms driven by both 252 

1981–2005 in the historical period and 2006–2010 in a future period under an RCP8.5 253 

scenario of CCSM4 experiments. 254 

(3) CCSM4-F1: Near-future simulation that includes the 30 largest storms driven by a 2021–255 

2050 CCSM4 projection under an RCP8.5 scenario. 256 

(4) CCSM4-F2: Far-future simulation that includes the 30 largest storms driven by a 2071–257 

2100 CCSM4 projection under an RCP 8.5 scenario. 258 

The Relative Humidity Maximization method (RHM; Ohara et al., 2011; Ishida et al., 2015) 259 

that adjusts relative humidity in the boundary conditions of the entire atmospheric column to 260 

100% (i.e., fully saturated) was then used to simulate moisture-maximized storms to derive PMP. 261 

Prior to PMP generation, the WRF simulations were extensively evaluated against both Oregon 262 

State University’s PRISM (Daly et al., 2008) and Oak Ridge National Laboratory’s (ORNL) 263 
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Daymet (Thornton et al., 1997) gridded precipitation data sets to select most appropriate 264 

parameterization scheme. The readers are referred to Rastogi et al. (2017) for further technical 265 

details regarding PMP estimation and WRF performance evaluation. 266 

In addition, conventional PMP rainfall estimates were obtained using HMR51 and HMR52 to 267 

provide a reference and enable comparison of ensemble-based simulations with conventional 268 

deterministic approach. The conventional approach requires conversion of depth-area-duration 269 

table to generate spatiotemporal storm hyetograph, after a deterministic PMP depth is chosen. In 270 

this study, we use spatial hourly precipitation grid as an input for hydrologic simulation which 271 

allows to capture the spatial structure of each storm. A key difference between the ensemble 272 

approach and conventional PMP estimate relies in identifying the most critical PMF event based 273 

on hydrologic and hydraulic simulations for each of the moisture-maximized storm as opposed to 274 

one deterministic event based on synthetic hyetograph. The ensemble-based approach allows to 275 

help us better understand the uncertainty associated with PMP estimates. 276 

2.2.2 Simulation of PMF 277 

The PMF simulations were conducted by using each of the 120 storms mentioned in Section 278 

2.2.1 as an input meteorological forcing to a high resolution distributed hydrologic model known 279 

as distributed hydrology soil vegetation model (DHSVM). The hydrologic model was selected 280 

due to its previous applications in studying climate change impacts on streamflow extremes and 281 

ability to provide high resolution output (e.g., streamflow at each channel in the stream network) 282 

which serves as a key input to drive flood model. DHSVM performs mass (water) and energy 283 

balance calculations at each grid cell and accounts for hydrological processes such as 284 

evapotranspiration, snowmelt, canopy snow interception and release, unsaturated soil moisture, 285 

saturated subsurface flow, overland flow, and channel flow. The spatially distributed parameters 286 
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include topography, soil, and vegetation. The model requires a set of meteorological inputs that 287 

includes precipitation, shortwave and longwave radiation, relative humidity, wind speed, and air 288 

temperature. A detailed description of DHSVM can be found in Wigmosta et al. (1994 and 2002) 289 

and Storck et al. (1998). 290 

The DHSVM setup for Etowah Watershed was obtained from Gangrade et al. (2018) which 291 

is a part of a much larger modeling effort performed for a HUC04 region i.e. Alabama-Coosa-292 

Tallapoosa River Basin. A brief description of the DHSVM setup is provided below. The readers 293 

are referred to Gangrade et al. (2018) for associated detailed technical description regarding 294 

setup, calibration and validation. The DHSVM was setup at a fine 90-m horizontal grid 295 

resolution at 3-h time steps from 1980 to 2012, using 1980 for model spin-up. A 90-m resolution 296 

digital elevation model (DEM) was resampled from the 30-m resolution NED for Etowah 297 

Watershed. The DEM serves as the base map and additional datasets including soil depth, soil 298 

type, and LULC type, were obtained at the same resolution of DEM. The stream network was 299 

obtained from the National Hydrography Dataset Plus (NHDPlus; McKay et al., 2012) for 300 

accurate representation of channels in the study area. The soil data was obtained from a 301 

multilayer contiguous US soil characteristics data set (Miller and White, 1998) derived from the 302 

State Soil Geographic Database (Schwarz and Alexander, 1995). A set of soil-hydraulic 303 

properties such as porosity, hydraulic conductivity, wilting point, bubbling pressure, and field 304 

capacity were assigned to every soil texture type (Maidment, 1993) for the dominant soil texture 305 

type at each grid cell. The LULC map was obtained from the USGS National Land Cover 306 

Database 2006 (NLCD; Fry et al., 2011). A set of vegetation properties including leaf area index, 307 

albedo, stomatal resistance, moisture threshold, and fractional coverage were assigned to every 308 

land cover type. 309 
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The PMF was obtained by employing the concept of meteorologically transpositionable 310 

storms to identify the most critical PMP input for the Etowah Watershed. Due to an overall 311 

smooth topography in the southeast United States, this approach allows to identify the most 312 

intense portion of a storm and transposition it over the desired study area. As a result, depending 313 

on the size and shape of a selected watershed, the transpositioned PMP storm inputs may be 314 

different. For each of the 120 moisture-maximized storms (as described in Section 2.2.1), the 315 

largest 72 hr average precipitation over the watershed was identified and transpositioned re-316 

gridded to the same 4 km DHSVM radar rainfall format used for DHSVM calibration and 317 

validation. In addition, the WRF output also provides shortwave and longwave radiation, 318 

humidity, and other required DHSVM meteorological inputs. As per the NRC guidelines (Prasad 319 

et al., 2011), a meteorological sequence that included 40% of PMP in the first 72 h (antecedent 320 

precipitation), followed by 72 h of no precipitation, and then 72 h of full PMP (critical 321 

precipitation) was used as the default setup to simulate PMF. The fully saturated moisture 322 

conditions were utilized at the beginning of DHSVM simulations. The simulation was continued 323 

for another 6 days to ensure the capture of peak flood hydrographs. This approach provides an 324 

ensemble of simulated DHSVM streamflow hydrographs for each set of storms (CFSR-CT, 325 

CCSM4-BL, CCSM4-F1, and CCSM4-F2). 326 

To compare the results with conventional PMF, PMP rainfall inputs were also calculated for 327 

Etowah Watershed using HMR51 and HMR52. The 72-h HMR PMP hyetograph was computed 328 

using a critically stacked temporal pattern, which was used to drive the DHSVM simulation. The 329 

critically stacked pattern allowed the occurrence of PMP for all durations (e.g., 1, 6, 12, 24, 48, 330 

72 h) within a single storm of 72-h duration to generate a high-intensity storm (HMR52). 331 

 332 
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2.2.3 Flood Modeling 333 

The flood simulation for this study was performed using the computationally enhanced 334 

version of the 2D hydraulic model Flood2D-GPU (Marshall et al., 2017), originally developed 335 

by Kalyanapu et al. (2011). The numerical algorithm in Flood2D-GPU utilize a first-order 336 

accurate upwind finite difference scheme that solves the non-linear hyperbolic shallow water 337 

equations (SWE) (Saint Venant Equations). These equations are simplified version of the 338 

Navier-Stokes equations, where the horizontal momentum and continuity equations are 339 

integrated over depth. The numerical model implements a structured grid to take advantage of 340 

the uniform grid structure of the DEM data. Flood2D-GPU has the capability to use a spatially 341 

varying surface roughness coefficient (Manning’s n value), which can be obtained from a 342 

standard table for a given land cover data (Phillips and Tadayon, 2007). The computational 343 

performance of the Flood2D-GPU model was improved using a hybrid MPI+CUDA architecture. 344 

The model speed up for the MPI + multiple Graphics Processing Unit (GPU) version was up to 345 

18x when compared to an identical single-process Open Multi-Processing (OpenMP) version 346 

(Marshall et al., 2017). The high performance of the model therefore allows to perform an 347 

ensemble simulation for two domains ME01 (~400,000 grid cells, 360 sq. km) and ME02 348 

(~563,000 grid cells, 507 sq. km). The simulations were conducted on Titan supercomputer 349 

maintained by the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory. 350 

The key input data required for Flood2D-GPU model are terrain data, surface roughness 351 

(Manning’s n value), inflow source locations and corresponding flow hydrographs. In this study, 352 

the 30m resolution DEM data is obtained from NED and a constant Manning’s n value (0.035) is 353 

utilized to setup the Flood2D-GPU. The inflow locations (Figure 1) are defined at the end of the 354 

channel segments obtained from NHDPlus network. The corresponding hydrographs for each 355 
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120 storms are extracted from the high-resolution hydrologic outputs from DHSVM (Section 356 

2.2.2) at three hourly time-step for both domains, i.e., ME01 and ME02. Since, the DHSVM 357 

outputs cumulative flow for each channel location, a post hydrologic-simulation water balance 358 

correction was applied to estimate incremental flow hydrographs for locations when required. 359 

The Flood2D-GPU performance is evaluated and presented in later section (please see Section 360 

3.1). The flood model output was stored at a 10-minutes interval for each storm. The current 361 

model setup allows to capture riverine or fluvial floods, the pluvial flood simulation capabilities 362 

will be incorporated in the future model improvements. 363 

An additional set of 120 flood simulations were conducted for ME02 to account for the 364 

reservoir operation effects in a rudimentary way. Since DHSVM setup in this study do not 365 

account for reservoir presence in the watershed, a post-hydrologic simulation correction was 366 

performed to adjust PMF hydrograph immediately downstream of Allatoona Lake and Dam. The 367 

correction involved subtracting a water volume equivalent to the maximum storage capacity of 368 

the Allatoona reservoir, i.e., 826.5 million m3 from the peak portion of the PMF hydrograph. This 369 

corrected hydrograph in addition to natural flow from other tributaries serve as an input to ME02 370 

to drive Flood2D-GPU for each of the 30 storm sets from CFSR-CT, CCSM4-BL, CCSM4-F1 371 

and CCSM4-F2. 372 

This correction provided a maximum possible flood mitigation in terms of flood inundation 373 

extents for the immediately downstream areas, under a best-case ideal flood management 374 

scenario, which assumed a perfect PMF prediction and completely empty reservoirs at the 375 

beginning of the PMF event. While actual reservoir operation will be different and more 376 

complex, this assessment can aid understanding of the maximum PMF retention capacity of the 377 

existing reservoirs and its impacts on flood mitigation. 378 
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2.3 Probabilistic Flood Mapping 379 

For each storm’s flood simulation (realization), the Flood2D-GPU simulation outputs were 380 

post processed to obtain a binary wet-dry map where for each grid cell the distinction was made 381 

by evaluating the flood depths (i.e. dry: flood depth equal zero, and wet was characterized as 382 

flood depth greater than zero). 383 

This results in a map of flood inundation extent for each realization. The probabilistic value 384 

of flooding for any given cell was then calculated by weighing each storm equally using 385 

Equation 1. This approach was utilized to produce one probabilistic flood map for each of the 386 

storm sets i.e. CFSR-CT, CCSM4-BL, CCSM4-F1 and CCSM4-F2, for both ME01 and ME02. 387 

In addition, probabilistic flood inundation maps were also generated for ME02 under reservoir 388 

operation. 389 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖=𝑁𝑁
𝑖𝑖=1
𝑁𝑁

     Equation 1 390 

Where,  391 

Pcell = probability to flood for any given cell 392 

Xi = 0 (dry) or 1(wet) for realization ‘i’  393 

N = total number of realizations/flood event simulations 394 

These probability values can then be presented as a spatial map of conditional probability of 395 

flooding given a PMF event has occurred for the region of interest. The probabilistic flood maps 396 

were generated for two model domains ME01 and ME02 for each of the 30 storm sets for CFSR-397 

CT, CCSM4-BL, CCSM4-F1 and CCSM4-F2. The flood simulations are referenced by adding 398 

the subscript ME01, ME02 and ME02R after the name of storm set. For example, CFSR-CT-399 

ME01, CFSR-CT-ME02 and CFSR-CT-ME02R refers to probabilistic flood maps generated for 400 
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CFSR-CT storms for model domain ME01, ME02 under natural flow, and ME02 under reservoir 401 

regulation respectively. 402 

3. Results and Discussion 403 

3.1 Flood2D-GPU Performance 404 

The Flood2D-GPU performance is evaluated by comparing a simulated 1 in 100-year event 405 

flood map against equivalent flood zones (Zone A / Zone AE) obtained from FEMA. This 406 

approach captures the spatial extents of flood inundation obtained from simulation and compare 407 

it with a benchmark dataset. It has been recently adopted to validate a hydrodynamic model for 408 

conterminous US (Wing et al. 2017) and others (Alfieri et al. 2014). The model validation has 409 

been performed for model domain ME01. The first step in the process involves estimation of a 410 

100-year streamflow value. It was computed by conducting a standard flood frequency analysis 411 

at the outlet of the ME01 using guidelines from Bulletin 17B prepared by Interagency Advisory 412 

Committee on Water Data (1982). The continuous streamflow data from the control simulation 413 

(i.e., DHSVM driven using observed historic precipitation from Daymet) was obtained for a 414 

period of 32 years (1981–2012) which serves as an input for flood frequency analysis. A series 415 

of annual maximum discharge was extracted from the hydrograph data. A log Pearson Type III 416 

(LP3) distribution is then fit to a series of annual maximum discharge, using a skewness 417 

parameter obtained for the region based on Plate 1 of Bulletin 17B. The results from the flood 418 

frequency analysis are presented in Figure 2. 419 

[Figure 2] 420 

We employ an ensemble-based approach to validate the Flood2D-GPU, as a single storm 421 

may not be able to capture the spatial-variability in the streamflow and may result in 422 

underestimation of the flood extents for some channels. The hydrographs were extracted for each 423 



18 
 

of the inflow locations (Figure 1) capturing each of the annual maximum discharge (32 events 424 

from 1981-2012). These hydrographs were then scaled to match the peak discharge to a 100-year 425 

flood event discharge (i.e., 18950 cfs at outlet of ME01, Figure 2) which served as an input to 426 

Flood2D-GPU. The ensemble simulation results in 32 flood inundation maps. The maximum 427 

inundation area is then selected from the 32 maps and compared against FEMA 100-year flood 428 

map rasterized to a 30 m resolution. The flood maps are compared based on a binary (flooded=1, 429 

not-flooded = 0) classification scheme as presented in Table 1. The comparison is performed 430 

exclusively for the region located downstream of the inflow locations. The vector-based flood 431 

extents for the region of interest were rasterized to Flood2D-GPU grid to enable a direct 432 

comparison. 433 

[Table 1] 434 

Figure 3 presents a comparison of flood inundation extents obtained from Flood2D-GPU and 435 

FEMA for 100-year flood event. The regions where Flood2D-GPU accurately predicts the 436 

FEMA flood zones are presented in blue. The region with overprediction (i.e. only flooded by 437 

Flood2D-GPU but not FEMA) are presented in red, while the regions with underprediction (i.e. 438 

flooded by FEMA but not captured by Flood2D-GPU are presented in green. The FEMA zones 439 

excluded from this evaluation due to model or other data limitations are presented in grey. The 440 

visual inspection reveals that Flood2D-GPU accurately predicts most of the FEMA flood zones. 441 

[Figure 3] 442 

The four key metrics to demonstrate model performance include hit rate (H), false alarm (F), 443 

critical success (C) and error (E) (Table 2). The hit rate (H) provides a measure of model to 444 

accurately predict the benchmark flood extents, however does not penalize for overprediction. 445 

Flood2D-GPU obtained a H=0.82 for ME01 revealing that model can accurately predict 82% of 446 
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the FEMA flood zones. False alarm (F) that measures overprediction is estimated as 0.15, 447 

demonstrating that 15% of the grid cells are falsely reported as flooded by the model. The critical 448 

success (C) equivalent to the F squared statistics, a common metric to evaluate spatial extents for 449 

flood studies (Bates and De Roo 2000), is estimated as 0.71 providing an overall measure of fit.  450 

The C metric adds a penalty to H for any overprediction and underprediction. In addition, the 451 

error value (E) for Flood2D-GPU being less than one (0.78) suggests an overall tendency of 452 

model to underpredict which predominantly occurs in the upstream reaches close to inflow 453 

boundary conditions. 454 

[Table 2] 455 

These key metrics reveal that Flood2D-GPU performance is at par to the acceptable range of 456 

these metrics provided in the literature (Alfieri et al. 2014, Wing et al. 2017). For instance, 457 

Alfieri et al. (2014) obtained H values between 0.59-0.78, and C values between 0.43-0.65 for a 458 

flood simulation at a 100 m resolution across selected areas in Germany and UK compared with 459 

national/regional hazard maps. Wing et al. (2017) performed a similar evaluation for validation 460 

of flood hazard model for conterminous US using FEMA flood zones as benchmark, with a H 461 

value as 0.685 and 0.815, and C value of 0.55 and 0.50 for a 90m and 30m resolution 462 

respectively. The results indicate an overall satisfactory performance of the Flood2D-GPU in 463 

comparing spatial extents for 1 in 100-year event against equivalent flood inundation zone 464 

obtained from FEMA. 465 

3.2 Ensemble PMF Hydrographs and Comparison with Deterministic Approach 466 

This section presents the ensemble PMF hydrographs for each of the four storm sets (i.e., 467 

CFSR-CT, CCSM4-BL, CCSM4-F1 and CCSM4-F2) at the outlet of the Etowah Watershed 468 

(Figure 4). The hydrographs resulting in the largest peak discharge are marked in thick lines and 469 
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are individually presented in Figure 5a. For further comparison, the PMF hydrograph from the 470 

conventional approach (HMR based) is also presented for the Etowah Watershed (Figure 5a). 471 

The range of peak discharge values for these events is presented in Figure 5b for Etowah 472 

watershed and at the outlet of computational Flood2D-domains ME01 and ME02 in Figure 5c 473 

and 5d respectively. 474 

[Figure 4] 475 

[Figure 5] 476 

The results indicate that peak discharges obtained for CCSM4-BL and HMR are comparable 477 

in magnitude with a maximum peak discharge value of 21,874 m3/s and 18,654 m3/s. The 478 

maximum peak discharge for CFSR-CT (27,732 m3/s) is greater as compared to that for CCSM4-479 

BL. This higher discharge could be attributed to higher PMP estimates for CFSR-CT, 480 

demonstrating the effect of choice of meteorological forcings on PMF. The effects of climate 481 

change on maximum peak discharge indicate a significant increase in peak discharge magnitude 482 

with an increase of approximately 58% for near future time period (CCSM4-F1; 2021-2050), and 483 

109% for far-future time period (CCSM4-F2;2071-2100). The comparison is performed with 484 

reference to peak discharge magnitude obtained for the baseline period CCSM4-BL. These 485 

changes could be directly attributed to increased projected PMP estimates in future periods 486 

resulting from intensification of hydrologic cycle caused by strong atmospheric warming. 487 

Readers are referred to Rastogi et al. (2017) and Gangrade et al. (2018) for further technical 488 

details. 489 

The results for Etowah Watershed demonstrate a large variability in the hydrograph shapes 490 

and peak discharge values (Figure 5b), also observed for ME01 and ME02 (Figure 5c and 5d). In 491 

addition to the key factor i.e. PMP magnitude, the variability in the hydrographs can also be 492 
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attributed to spatiotemporal rainfall structure and watershed heterogeneity. The results highlight 493 

the range of uncertainties captured in terms of streamflow estimates which are often missing in 494 

the conventional deterministic PMF estimation. 495 

3.3 Development of Probabilistic Flood Maps 496 

An ensemble approach provides multiple hydrographs and peak discharge magnitudes. 497 

Generally, the most extreme or worst-case scenario is often selected by choosing the PMF 498 

hydrograph with maximum discharge. In this section, we analyze the effects of PMF in terms of 499 

flood inundation area by translating these hydrographs into flood inundation maps and 500 

comparing the results to flood extents obtained from a conventional approach. This investigation 501 

will improve the understanding of flood damages/extents resulting from a PMF event and 502 

associated uncertainties. 503 

The probabilistic flood maps are prepared as outlined in Section 2.3 and presented for each of 504 

the 30 storms for CFSR-CT, CCSM4-BL, CCSM4-F1 and CCSM4-F2 (Figure 6, Panels a 505 

through d for ME01, Panels e through h for ME02 and panels i through l for ME02R). The 506 

results are presented in term of conditional probability of flooding for a given cell, assuming a 507 

PMF has occurred for the region. Panel a and e also include the deterministic flood extents 508 

obtained from Flood2D-GPU driven by conventional PMF, presented as white contours overlaid 509 

on top of the probabilistic flood maps. In addition, the range of maximum flood inundation area 510 

associated with each storm event is presented in Figure 7 for ME01 (Panel a), ME02 under 511 

natural flow condition (Panel b) and ME02 under reservoir regulation (Panel c). 512 

[Figure 6] 513 

[Figure 7] 514 
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A comparison of maximum flood inundation extent for upstream domain (ME01; Figure 6a) 515 

obtained from conventional approach (HMR based approach; 15.67 km2) is very similar to 516 

maximum flooding extents of CFSR-CT-ME01 (16.95 km2) and CCSM4-BL-ME01(16.44 km2) 517 

resulting in an 8.2 % and 4.9% respective increment in inundation area compared to HMR. On 518 

the other hand, the downstream domain (ME02; Figure 6 e) has a larger difference in flood 519 

extents obtained from HMR approach (97.5 km2) compared to maximum flood extents of CFSR-520 

CT-ME02 (118.5 km2) and CCSM4-BL-ME02(102.08 km2) resulting in a 21.5 % and 4.7% 521 

respective increment in inundation area compared to HMR. A comparison of panels e and i in 522 

Figure 6, reveals an overall effect of Allatoona reservoir in regulating flood damages in 523 

immediately downstream areas. An ideal reservoir operation results in a decrease of maximum 524 

flood inundation area by 9.5 % in case of CFSR-CT. 525 

Under climate change, the projected maximum inundation area reveals a likely increase for 526 

both near future period (CCSM4-F1) and far-future period (CCSM4-F2). The projected 527 

maximum inundation area is computed as 17.44 km2 and 19.24 km2 respectively for ME01 which 528 

suggests an increment of 7.9% and 17 % compared to maximum inundation area obtained for 529 

baseline period CCSM4-BL-ME01 (Figure 7a). Similarly, an increase of 19.3% (22.4%) and 530 

33.4% (45%) in the maximum inundation area is projected for ME02 (ME02R) for CCSM4-F1 531 

and CCSM4-F2 respectively compared to the maximum flood inundation of 102.08 km2 (88.87 532 

km2) for CCSM4-BL-ME02 (CCSM4-BL-ME02R). The results indicate that increase in 533 

maximum inundation area is projected to be higher for ME02R compared to ME02. This 534 

suggests that magnitude of storms in future time periods will change such that current reservoir 535 

capacity will have lower efficiency to successfully mitigate flood damages downstream of the 536 

region. 537 
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Given the wide range of areal extents produced for each storm set, a further insight into flood 538 

characteristics (such as flood inundation area, gauge height etc.) with hydrologic/meteorological 539 

parameters can improve the understanding of flood zones. The relationship between peak 540 

discharge and maximum flood inundation area is presented in Figure 8. While the maximum 541 

flood inundation area is directly related to the peak discharge at the outlet of each model domain. 542 

The relationship is non-linear and positively correlated with higher variance observed for ME02 543 

(Figure 8b) compared to ME01 (Figure 8a). This could be mainly attributed to the relatively flat 544 

topography in ME02. The variability demonstrates that a similar peak discharge could result in 545 

varying extents of flood inundation which could be attributed to hydrographs characteristics 546 

(including timing, sequence and total flood volume) and spatial variations in streamflow. For 547 

instance, two storms with maximum peak discharge of 11,112 m3/s and 11,504 m3/s respectively 548 

produces a very different maximum flood inundation area of 102.8 km2 and 82.01 km2 for ME02 549 

(Figure 8b). 550 

Thus, reliance on a single peak discharge value for PMF obtained from the conventional 551 

approach cannot capture such variations on flood impacts. This fact further highlights the 552 

importance of ensemble-based approach over deterministic approach for a more comprehensive 553 

understanding of flood damages resulting from an extreme event.  554 

[Figure 8] 555 

3.4 Potential changes in flood impacts arising from PMF 556 

In this section, we employ the probabilistic flood maps to understand the potential changes in 557 

flood regime and its impacts on infrastructure/urban developments under climate change. To 558 

investigate how the conditional probability of flooding in a region changes in future, the 559 

difference in probability of flooding is calculated for CCSM4-F1 and CCSM4-F2, with respect to 560 
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CCSM4-BL for each ME01, ME02 and ME02R. The grid cells either flooded (i.e. probability 561 

=1) or non-flooded (i.e. probability =0) in inundation maps for each storm (CCSM4-BL, 562 

CCSM4-F1 and CCSM4-F2) are excluded from analysis (Figure 9). 563 

[Figure 9] 564 

The results indicate that overall probability of flooding will increase by up to 30% in 565 

CCSM4-F1 for each ME01, ME02 and ME02R, where most grid cells will observe an increase 566 

in probability value ranging between 0–0.15. Similarly, the histogram for CCSM4-F2 indicate 567 

that overall probability of flooding will increase by up to 60% for CCSM4-F2 for each ME01, 568 

ME02 and ME02R with most cells observing a positive increase ranging between 0–0.25. This 569 

process allows the identification of additional areas which may be more susceptible to flooding 570 

in addition to the most vulnerable areas (i.e., probability =1). The analysis is further expanded to 571 

demonstrate utility of probabilistic flood maps as a tool to identify potential hazards to electricity 572 

grid infrastructure arising from PMF events in the downstream region of Allatoona Dam. The 573 

electric substation data (Homeland Infrastructure Foundation-Level DATA (HIFLD); Figure 1) 574 

overlaid on top of probabilistic flood maps reveal the probability of flooding for the grid cell 575 

based on substation location. The individual results are presented in Figure 10. These results 576 

identify the substations at high risk of flooding given a PMF event has occurred. Out of 23 577 

substations selected for the analysis, 8 substations demonstrate a high probability of flooding 578 

(>0.8) for ME02 under natural flow condition, which reduces to 3 substations under the effect of 579 

ideal regulation from the reservoir for CCSM4-BL.  Similarly, the substation which are currently 580 

not at risk of flooding in CCSM4-BL but have a higher chance of flooding in future time periods 581 

i.e. CCSM4-F1 and CCSM4-F2 are also identified (for instance, substation #8). 582 

[Figure 10] 583 
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This risk identification can assist in improving current flood mitigation features while also 584 

equips the decision makers with information to be utilized in strategic planning and development 585 

of future urban areas/infrastructure. 586 

3.5 Sensitivity Analysis 587 

To understand the overall and relative sensitivity of flood inundation to various factors such 588 

as meteorological forcings, climate change, hydraulics and hydrologic model inputs and 589 

parameters; a comprehensive sensitivity test was performed with following sets of experiments. 590 

(1) Scenario 1–Baseline simulation (S1): One Flood2D-GPU simulation for ME02 driven 591 

by hydrographs associated with the event with maximum peak discharge (out of 30 592 

events) obtained from CCSM4 forcings (CCSM4-BL), and default Flood2D-GPU 593 

configuration (i.e. 30 m grid resolution, and manning’s n value = 0.035). 594 

(2) Scenario 2–Alternative meteorological forcings (S2): 595 

S2-a: One Flood2D-GPU simulation for ME02 using PMF hydrographs with maximum 596 

peak discharge obtained from CFSR forcings (CFSR-CT), and default Flood2D-GPU 597 

configuration (i.e. 30 m grid resolution, and manning’s n value = 0.035) 598 

S2-b: One Flood2D-GPU simulation for ME02 using PMF hydrographs with maximum 599 

peak discharge obtained from CFSR forcings (CFSR-CT), and default Flood2D-GPU 600 

configuration (i.e. 30 m grid resolution, and manning’s n value = 0.035) 601 

(3) Scenario 3–Climate change (S3): 602 

S3-a: One Flood2D-GPU simulation for ME02 using PMF hydrographs with maximum 603 

peak discharge obtained from near future CCSM4 forcings (CCSM4-F1), and default 604 

Flood2D-GPU configuration (i.e. 30 m grid resolution, and manning’s n value = 0.035) 605 
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S3-b: One Flood2D-GPU simulation for ME02 using PMF hydrographs with maximum 606 

peak discharge obtained from far future CCSM4 forcings (CCSM4-F2), and default 607 

Flood2D-GPU configuration (i.e. 30 m grid resolution, and manning’s n value = 0.035) 608 

(4) Scenario 4–Horizontal grid resolution for Flood2D-GPU (S4): One Flood2D-GPU 609 

simulation for ME02 driven by hydrographs associated with the event with maximum 610 

peak discharge (out of 30 events) obtained from CCSM4 forcings (CCSM4-BL), and 611 

default Flood2D-GPU configuration with 10-m DEM 612 

(5) Scenario 5–Manning’s’ roughness coefficient (S5): 613 

S5-a: One Flood2D-GPU simulation for ME02 driven by hydrographs associated with 614 

the event with maximum peak discharge (out of 30 events) obtained from CCSM4 615 

forcings (CCSM4-BL), and default Flood2D-GPU configuration with manning’s n value 616 

= 0.015. 617 

S5-b: One Flood2D-GPU simulation for ME02 driven by hydrographs associated with 618 

the event with maximum peak discharge (out of 30 events) obtained from CCSM4 619 

forcings (CCSM4-BL), and default Flood2D-GPU configuration with manning’s n value 620 

= 0.055. 621 

(6) Scenario 6–Antecedent moisture conditions (S6): One Flood2D-GPU simulation for 622 

ME02 driven by hydrographs associated with the event with maximum peak discharge 623 

(out of 30 events) obtained from CCSM4 forcings (CCSM4-BL), with unsaturated soil 624 

moisture conditions at the beginning of hydrologic simulation, and default Flood2D-GPU 625 

configuration (i.e. 30 m grid resolution, and manning’s n value = 0.035) 626 

(7) Scenario 7–Reservoir operations (S7): One Flood2D-GPU simulation for ME02 driven 627 

by hydrographs associated with the event with maximum peak discharge (out of 30 628 
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events) obtained from CCSM4 forcings (CCSM4-BL) adjusted to reflect ideal reservoir 629 

operations and default Flood2D-GPU configuration (i.e. 30 m grid resolution, and 630 

manning’s n value = 0.035) 631 

The simulation results from scenarios S2 through S7 are compared with reference to control 632 

scenario (S1) in Figure 11. The relative sensitivity reveals that climate change (S3a and S3b) and 633 

meteorological forcings (S2a) are the most sensitive factors for flood inundation area and the 634 

median flood depths for ME02. The climate change is likely to cause a relative change of up to 635 

33% (47.4%) in inundated area (median flood depth). These differences in inundation areas for 636 

the above mentioned scenarios could be mainly attributed to changes in PMP values revealing 637 

that precipitation is the most sensitive factor affecting flood regimes. The reservoir operations 638 

(S7) can also contribute moderately by reducing the overall flood inundation area by 639 

approximately 13% compared to S1. It is important to note that the reduction is calculated under 640 

an ideal reservoir operation scenario and will be directly proportional to the maximum storage 641 

capacity of reservoir as well. The other two sensitive parameters in this order include the effect 642 

of antecedent moisture conditions in the hydrologic model (S6) and the effect of use of a high-643 

resolution DEM (S4). They produce a relative change of -8.2% and +6.7% respectively for the 644 

inundation area. The effect of manning’s roughness coefficient was found to be least sensitive in 645 

this case. A similar trend is also noticed for median flood depths.  646 

[Figure 11] 647 

  648 
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4. Summary and Conclusions 649 

In this study, a high-resolution process-based hydro-meteorological modeling framework is 650 

presented to generate ensemble based probabilistic flood maps for two selected domains in 651 

Etowah Watershed, Georgia located in southeastern United States. These maps are prepared for 652 

the worst-case flood scenarios i.e. PMF which occur under adverse set of hydrometeorological 653 

conditions including PMP and other hydrologic factors such as saturated antecedent soil moisture 654 

conditions. A total of 120 relative humidity maximized PMP storms were obtained under 655 

historical and future climate conditions from Rastogi et al. (2017). These storms were used to 656 

drive a calibrated hydrologic model (DHSVM) at a 90 m spatial resolution to generate PMF 657 

estimates for the selected watershed. The high resolution 3-hourly hydrographs obtained from 658 

DHSVM for each storm, were used to drive a two-dimensional GPU based hydraulic model 659 

(Flood2D-GPU) at a 30 m spatial resolution to produce flood maps for each storm. The 660 

probability of inundation is then calculated at each grid cell of flood domain, used to generate 661 

probabilistic flood maps. Further, the relative sensitivity of flood inundation area and median 662 

flood depth was evaluated for various factors such as meteorological forcings, climate change, 663 

antecedent moisture conditions, and hydraulic model inputs and parameters. 664 

The results indicate that peak discharge from the PMF hydrograph is likely to increase 665 

significantly for the Etowah watershed region under a changing climate. The region downstream 666 

of Allatoona Lake is likely to observe an increase of up to 58% in peak discharge magnitude for 667 

near future period i.e. 2021-2050 (CCSM4-F1), and up to 109% for far future period i.e. 2071-668 

2100 (CCSM4-F2) under RCP8.5 compared to baseline period (CCSM4-CT). These changes in 669 

PMF translate into approximately 19% and 33% increase in the flood inundation area. An 670 

evaluation of probabilistic inundation maps reveal that the probability of flooding is likely to 671 
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increase by up to 30% and 60% respectively under the near future and far future scenarios 672 

respectively. The relative sensitivity experiments further demonstrate that the precipitation is the 673 

most sensitive factor affecting flood regime including flood inundation areas and depth. The 674 

choice of meteorological forcings can contribute to up to a 16% change in the flood inundation 675 

area. Further, the flood inundation elasticity relationships developed between peak streamflow 676 

and corresponding flood inundation area reveals the uncertainties associated with the shape and 677 

timings of hydrographs originating from the spatiotemporal variability in precipitation along 678 

with the watershed heterogeneity. 679 

This study presents a unique framework of high resolution process-based hydro-680 

meteorological and two-dimensional numerical flood model to enable generation of probabilistic 681 

flood inundation maps through an ensemble-based approach for PMP and PMF estimation.  The 682 

uncertainties associated with the most sensitive factor i.e. precipitation and others can be 683 

successfully captured with an ensemble approach as presented in this study. The comprehensive 684 

relative sensitivity analysis and its effects on flood regime further identifies the most important 685 

factors causing changes to flood regimes. Although, the study has focused on a particular 686 

HUC08 basin, the framework can be extended to other regions to generate ensemble based 687 

probabilistic flood inundation maps. These maps can serve as an important tool and provide 688 

additional information to decision makers compared to deterministic inundation maps obtained 689 

from conventional approach. Such an evaluation of a region not only determines the regions 690 

under flood risks, but also informs the stakeholders about the probability of inundation to enable 691 

an informed decision. 692 

 693 

  694 



30 
 

Acknowledgement 695 

This study was supported by the Hydropower Research Foundation, US Department of 696 

Energy (DOE) Water Power Technologies Office, Biological and Environmental Research 697 

Integrated Assessment Program. The research used resources of the Oak Ridge Leadership 698 

Computing Facility at Oak Ridge National Laboratory. Parts of co-authors are employees of UT-699 

Battelle, LLC, under contract DE-AC05-00OR22725 with DOE. Accordingly, the US 700 

government retains and the publisher, by accepting the article for publication, acknowledges that 701 

the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or 702 

reproduce the published form of this manuscript, or allow others to do so, for US Government 703 

purposes. The sources of the input datasets used in the study are provided in the paper where 704 

applicable. The meteorological data used in this study were obtained from Rastogi et al, (2017). 705 

The hydrologic model DHSVM v3.1.1 used in this study is open source and available at:  706 

https://dhsvm.pnnl.gov/code.stm and setup was obtained from Gangrade et al, (2018). Other data 707 

questions can be directed to S.-C. Kao (kaos@ornl.gov) and/or Sudershan Gangrade 708 

(gangrades@ornl.gov) at the ORNL. 709 

 710 

  711 

https://dhsvm.pnnl.gov/code.stm
mailto:kaos@ornl.gov
mailto:gangrades@ornl.gov


31 
 

References 712 

Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P. and Feyen, L. (2014) Advances in pan‐713 

European flood hazard mapping. Hydrological Processes 28(13), 4067-4077. 714 

Alfonso, L., M. M. Mukolwe, and G. Di Baldassarre (2016), Probabilistic Flood Maps to Support 715 

Decision-making: Mapping the Value of Information, Water Resour. Res., 52(2), 1026–1043, 716 

doi:10.1002/2015WR017378. 717 

Bates, P.D. and De Roo, A. (2000) A simple raster-based model for flood inundation simulation. 718 

Journal of Hydrology 236(1-2), 54-77. 719 

Beauchamp, J., R. Leconte, M. Trudel, and F. Brissette (2013), Estimation of the Summer-fall 720 

PMP and PMF of A Northern Watershed under A Changed Climate, Water Resour. Res., 49, 721 

3852–3862, doi:10.1002/wrcr.20336. 722 

Büchele, B., H. Kreibich, A. Kron, A. Thieken, J. Ihringer, P. Oberle, B. Merz, and F. Nestmann 723 

(2006), Flood-risk Mapping: Contributions Towards an Enhanced Assessment of Extreme 724 

Events and Associated Risks, Nat. Hazards Earth Syst. Sci., 6, 485–503, doi:10.5194/nhess-725 

6-485-2006. 726 

Caseri, A., P. Javelle, M. Ramos, and E. Leblois (2016), Precipitation Ensembles for Flood Alert, 727 

J. Flood Risk Manage, 9: 402-415. doi:10.1111/jfr3.12203. 728 

Di Baldassarre, G., G. Schumann, P. D. Bates, J. E. Freer, and K. J. Beven (2010), Flood-plain 729 

Mapping: A Critical Discussion of Deterministic and Probabilistic approaches, Hydrol. Sci. 730 

J., 55(3), 364–376, doi:10.1080/02626661003683389. 731 

Domeneghetti, A., S. Vorogushyn, A. Castellarin, B. Merz, and A. Brath (2013), Probabilistic 732 

Flood Hazard Mapping: Effects of Uncertain Boundary Conditions, Hydrol. Earth Syst. Sci., 733 

17, 3127–3140, doi:10.5194/hess-17-3127-2013, 2013. 734 



32 
 

Federal Emergency Management Agency (FEMA) (2018), Guidance for Flood Risk Analysis 735 

and Mapping; Hydrology: Rainfall-Runoff Analysis, https://www.fema.gov/media-library-736 

data/1520964160255-737 

7c49e1753d0b2634e0c5fb4999459374/Hydrologic_Rainfall_Runoff_Analysis_Feb_2018.pd738 

f, accessed May 2018. 739 

Gangrade, S., S.-C. Kao, B. S. Naz, D. Rastogi, M. Ashfaq, N. Singh, and B. L. Preston (2018), 740 

Sensitivity of Probable Maximum Flood in a Changing Environment, Water Resour. Res., in 741 

press, doi:10.1029/2017WR021987. 742 

Giustarini, L., R. Hostache, D. Kavetski, M. Chini, G. Corato, S. Schlaffer, and P. Matgen 743 

(2016), Probabilistic Flood Mapping Using Synthetic Aperture Radar Data, IEEE T. Geosci. 744 

Remote, 54(12), 6958–6969, doi:10.1109/TGRS.2016.2592951. 745 

Interagency Advisory Committee on Water Data. (1982). “Guidelines for determining flood flow 746 

frequency.” Hydrology Subcommittee Bulletin 17B, U.S. Geological Survey, Office of 747 

Water Data Coordination, Reston, VA, 194.  748 

Jenkins, K., J. Hall, V. Glenis, and C. Kilsby (2017), A Probabilistic Analysis of Surface Water 749 

Flood Risk in London, Risk Analysis, doi:10.1111/risa.12930. 750 

Kalyanapu, A. J., S. Shankar, E. R. Pardyjak, D. R. Judi, and S. J. Burian (2011), Assessment of 751 

GPU Computational Enhancement to A 2D Flood Model, Environ. Modell. Softw., 26(8), 752 

1009–1016, doi:10.1016/j.envsoft.2011.02.014. 753 

Klein, I. M., A. N. Rousseau, A. Frigon, D. Freudiger, and P. Gagnon (2016), Evaluation of 754 

Probable Maximum Snow Accumulation: Development of A Methodology for Climate 755 

Change Studies, J. Hydrol., 537, 74–85, doi:10.1016/j.jhydrol.2016.03.031. 756 

https://www.fema.gov/media-library-data/1520964160255-7c49e1753d0b2634e0c5fb4999459374/Hydrologic_Rainfall_Runoff_Analysis_Feb_2018.pdf
https://www.fema.gov/media-library-data/1520964160255-7c49e1753d0b2634e0c5fb4999459374/Hydrologic_Rainfall_Runoff_Analysis_Feb_2018.pdf
https://www.fema.gov/media-library-data/1520964160255-7c49e1753d0b2634e0c5fb4999459374/Hydrologic_Rainfall_Runoff_Analysis_Feb_2018.pdf
https://www.fema.gov/media-library-data/1520964160255-7c49e1753d0b2634e0c5fb4999459374/Hydrologic_Rainfall_Runoff_Analysis_Feb_2018.pdf


33 
 

Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon 757 

(2013), Probable Maximum Precipitation and Climate Change, Geophys. Res. Lett., 40, 758 

1402–1408, doi:10.1002/grl.50334. 759 

Micovic, Z., M. G. Schaefer, and G. H. Taylor (2015), Uncertainty analysis for probable 760 

maximum precipitation estimates, J. Hydrol., 521, 360–373, 761 

doi:10.1016/j.jhydrol.2014.12.033. 762 

National Centers for Environmental Information (NCEI) (2018), U.S. Billion-Dollar Weather 763 

and Climate Disasters, https://www.ncdc.noaa.gov/billions/, accessed May 2018. 764 

Neal, J., C. Keef, P. Bates, K. Beven, and D. Leedal (2013), Probabilistic Flood Risk Mapping 765 

including Spatial Dependence, Hydrol. Process., 27(9), 1349–1363, doi:10.1002/hyp.9572. 766 

Nuswantoro, R., F. Diermanse, and F. Molkenthin (2016), Probabilistic Flood Hazard Maps for 767 

Jakarta, J. Flood Risk Manage, 9(2), 105–124, doi:10.1111/jfr3.12114. 768 

Papaioannou, G., A. Loukas, L. Vasiliades, and G. Aronica (2016), Flood Inundation Mapping 769 

Sensitivity to Riverine Spatial Resolution and Modelling Approach, Nat. Hazards, 83(Suppl 770 

1), 117–132, doi:10.1007/s11069-016-2382-1. 771 

Papaioannou, G., L. Vasiliades, A. Loukas, and G. T. Aronica (2017), Probabilistic Flood 772 

Inundation Mapping at Ungauged Streams Due to Roughness Coefficient Uncertainty in 773 

Hydraulic Modelling, Adv. Geosci., 44, 23–34, doi:10.5194/adgeo-44-23-2017. 774 

Pattison, I., S. N. Lane, R. J. Hardy, and S. M. Reaney (2014), The Role of Tributary Relative 775 

Timing and Sequencing in Controlling Large Floods, Water Resour. Res., 50, 5444–5458, 776 

doi:10.1002/2013WR014067. 777 

Pedrozo‐Acuña, A., J. P. Rodríguez‐Rincón, M. Arganis‐Juárez, R. Domínguez‐Mora, and F. J. 778 

González Villareal (2015), Estimation of Probabilistic Flood Inundation Maps for An 779 

https://www.ncdc.noaa.gov/billions/


34 
 

Extreme Event: Pánuco River, México, J. Flood Risk Manage, 8(2), 177–192, 780 

doi:10.1111/jfr3.12067. 781 

Phillips, J. V., & Tadayon, S. (2006). Selection of Manning's roughness coefficient for natural 782 

and constructed vegetated and non-vegetated channels, and vegetation maintenance plan 783 

guidelines for vegetated channels in Central Arizona. US Department of the Interior, US 784 

Geological Survey. 785 

Prime, T., J. M. Brown, and A. J. Plater (2016), Flood Inundation Uncertainty: The Case of a 786 

0.5% Annual Probability Flood Event, Environ. Sci. Policy, 59, 1–9, 787 

doi:10.1016/j.envsci.2016.01.018. 788 

Rastogi, D., S.-C. Kao, M. Ashfaq, R. Mei, E. D. Kabela, S. Gangrade, B. S. Naz, B. L. Preston, 789 

N. Singh, and V. G. Anantharaj (2017), Effects of Climate Change on Probable Maximum 790 

Precipitation: A Sensitivity Study over the Alabama-Coosa-Tallapoosa River Basin, J. 791 

Geophys. Res., 122, 4808–4828, doi:10.1002/2016JD026001. 792 

Rousseau, A. N., I. M. Klein, D. Freudiger, P. Gagnon, A. Frigon and C. Ratté-Fortin (2014), 793 

Development of A Methodology to Evaluate Probable Maximum Precipitation (PMP) Under 794 

Changing Climate Conditions: Application to Southern Quebec, Canada, J. Hydrol., 519, 795 

3094–3109, doi:10.1016/j.jhydrol.2014.10.053. 796 

Smemoe, C. M., E. J. Nelson, A. K. Zundel, and A. W. Miller (2007), Demonstrating Floodplain 797 

Uncertainty Using Flood Probability Maps, J. Am. Water Resour. As., 43(2), 359–371, 798 

doi:10.1111/j.1752-1688.2007.00028.x. 799 

Skamarock, W., J. Klemp, J. Dudhia, D. Gill, D. Barker, M. Duda, X. Huang, W. Wang and J. 800 

Powers (2008), A Description of the Advanced Research WRF version 3, NCAR Technical 801 

Note, NCAR/TN-475 STR125, National Center for Atmospheric Research, Boulder, CO. 802 



35 
 

Stratz, S. A. and F. Hossain (2014), Probable Maximum Precipitation in A Changing Climate: 803 

Implications for Dam Design, J. Hydrol. Eng., 19(12), 06014006, 804 

doi:10.1061/(ASCE)HE.1943-5584.0001021. 805 

United Nations Organization (1964), Manual of Standards and Criteria for Planning Water 806 

Resource Project, Water Resource Series, 26. 807 

Wing, O.E.J., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A. and Erickson, T.A. 808 

(2017) Validation of a 30 m resolution flood hazard model of the conterminous United 809 

States. Water Resources Research 53(9), 7968-7986. 810 

Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier (1994), A Distributed Hydrology‐vegetation 811 

Model for Complex Terrain, Water Resour. Res., 30(6), 1665–1679, 812 

doi:10.1029/94WR00436. 813 

Wigmosta, M. S., B. Nijssen, P. Storck, and D. P. Lettenmaier (2002), The Distributed 814 

Hydrology Soil Vegetation Model, in Mathematical Models of Small Watershed Hydrology 815 

and Applications, V.P. Singh, D.K. Frevert, eds., Water Resource Publications, Littleton, 816 

CO., p. 7–42. 817 

World Meteorological Organization (WMO) (2009), Manual on Estimation of Probable 818 

Maximum Precipitation (PMP), WMO-No. 1045, World Meteorological Organization, 819 

Geneva, Switzerland. 820 

Zischg, A. P., G. Felder, R. Weingartner, N. Quinn, G. Coxon, J. Neal, J. Freer, and P. Bates 821 

(2018), Effects of Variability in Probable Maximum Precipitation Patterns on Flood Losses, 822 

Hydrol. Earth Syst. Sci., 22, 2759–2773, doi:10.5194/hess-22-2759-2018. 823 

  824 



36 
 

Figures and Tables 825 

 826 

 827 
Figure 1. Etowah watershed with two selected areas of interest: ME01 and ME02; along with 828 
Flood2D-GPU setup including computational domains, DEM, inflow locations and stream 829 
network. The inserted panel at left shows the overall location of Etowah Watershed in the state 830 
of Georgia, United States. 831 
 832 
  833 
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 834 
Figure 2. Standard flood frequency analysis for ME01 as per the guidelines of Bulletin 17B. 835 
 836 
  837 
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 838 
Figure 3. A comparison of flood inundation spatial extents obtained from Flood2D-GPU and 839 
FEMA for 100-year flood event. The regions flooded with both Flood2D-GPU and FEMA flood 840 
zones are presented in blue. The region in red/green represent the cells flooded only by Flood2D-841 
GPU/FEMA. 842 
 843 
  844 
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 845 
Figure 4. Ensemble PMF hydrographs for each set of PMP storms (CFSR-CT, CCSM4-BL, 846 
CCSM4-F1, and CCSM4-F2) at the outlet of Etowah Watershed. The hydrograph resulting in 847 
peak discharge is presented as a thick line. 848 
 849 
  850 
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 851 
Figure 5. PMF Hydrographs selected based on peak discharge for Etowah Watershed (Panel a) 852 
and range of peak discharge for each set of simulations (CFSR-CT, CCSM4-BL, CCSM4-F1, 853 
and CCSM4-F2) for Etowah Watershed and ME01 and ME02 (Panel b, c and d respectively). 854 
 855 
  856 
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 857 
Figure 6. Probabilistic flood maps for ME01 (a through d), ME02 (e through h), ME02 with reservoir regulation (i through m) for 858 
each of the storm sets CFSR-CT, CCSM4-BL, CCSM4-F1 and CCSM4-F2. The Panels a and e also show HMR52 based flood extents 859 
in white contour. 860 
  861 
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 862 
Figure 7. Boxplot showing the range of area under inundation for each of the storms sets for 863 
region ME01 (Panel a), ME02 under natural flow condition (Panel b) and ME02 under reservoir 864 
regulation (Panel c). 865 
 866 
  867 
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 868 
Figure 8. Flood inundation elasticity with respect to peak discharge for each set of simulations 869 
(CFSR-CT, CCSM4-BL, CCSM4-F1, and CCSM4-F2) for ME01 and ME02. 870 
 871 
  872 
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 873 
Figure 9. Changes in flood inundation probability for near future (CCSM4-F1) and far future 874 
(CCSM4-F2) 875 
 876 
  877 
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 878 
Figure 10. Probability of flooding for 23 selected substations for each storm set i.e. CCSM4-BL, 879 
CCSM4-F1 and CCSM4-F2 for ME02 under natural flow (panel a) and under ideal reservoir 880 
regulation (panel b). 881 
 882 

883 
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 884 
Figure 11. Figure summarizing relative sensitivity of area inundated and median flood depths 885 
from each scenario with reference to scenario 1 (S1). The relative change is calculated by 886 
comparing the percent change of the given variable with reference to control scenario (S1). 887 
 888 
  889 
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Table 1. Contingency Table for the analysis domain in ME01 represented as a fraction of total 890 
number of cells in the analysis domain. 891 

Cells Wet in Model (M1) Dry in Model (M0) 
Wet in FEMA (B1) 0.0798 (M1B1) 0.0181 (M0B1) 
Dry in FEMA (B0) 0.0142 (M1B0) 0.8880 (M0B0) 

 892 
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Table 2. Key flood model performance metrics calculated for ME01 for a 100-year ensemble 894 
flood event. Adopted from Wing et al. (2017) . 895 

Criterion Formula Calculated 
Value Range Description 

Hit Rate 
(H) 

M1B1 / 
(M1B1+M0B1) 0.82 

0 - 1 
0 = (none of the wet 
benchmark data are 
wet model data) 
1 = (all of the wet 
benchmark data are 
wet model data). 

Measure of tendency of 
model to accurately 
predict the benchmark 
flood extents 

False 
Alarm 
Ratio (F) 

M1B0 / 
(M1B0+M1B1) 
 

0.15 

0 – 1 
 
0 (no false alarms) 
1 (all false alarms). 

Measure of tendency to 
overpredict flood extent 

Critical 
Success 
Index (C) 

M1B1 / 
(M1B1+M0B1
+M1B0) 

0.71 

0 - 1 
0 (no match between 
modeled and 
benchmark data) 
1 (perfect match 
between modeled and 
benchmark data). 

Measure of fit with 
penalty for 
overprediction and 
underprediction 

Error (E) M1B0 / M0B1 0.78 

0 – infinity 
 
E=1: no bias, 
0<=E<1 indicates a 
tendency toward 
underprediction, 
and 
1<E<=infinity 
indicates a tendency 
toward overprediction. 

Measure of tendency 
toward overprediction or 
underprediction. 
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