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2 Introduction 
 

Water represents the “fuel” used to generate hydropower and, whether that water is stored in 

a natural lake or a man-made reservoir, less water means less generation and lower revenues for 

generators. As such, hydrologic variability has significant financial implications for hydropower 

producers. Within most hydropower systems, low water levels lead to reduced generation, and 

power utilities must typically compensate for this reduction with other more expensive sources 

(coal, natural gas, etc.), thereby creating a combination of lower revenues and/or higher costs 

that can prove financially disruptive (National Energy Technology Laboratory, 2009). Concerns 

over even greater hydrologic variability in the future (e.g., climate change) provide an increased 

sense of urgency to both understand the nature of the financial risks posed by hydrologic variability 

and to develop strategies for limiting their impacts. Within this context, financial tools (i.e., 

insurance or some other form of risk transfer instrument), can facilitate more adaptable methods 

for managing the financial impacts of hydrologic variability. 

Instruments for hedging uncertainties in electricity prices, fuel costs and electricity 

demand (e.g., heating/cooling degree contracts) are common within the energy sector, but few 

tools exist to specifically hedge against water scarcity. Index insurance contracts, which are 

designed to pay-off when some environmental metric, typically precipitation, at a specified 

location drops below a specified level, have been investigated, and are being used in agriculture 

(Chantarat et al., 2007; Fuchs and Wolff, 2011; Hellmuth et al., 2009; Kellner and Musshoff, 

2011; Khalil et al., 2007; Lou et al., 2009), and some investigation of their use by water utilities 

has also been undertaken (Brown and Carriquiry, 2007; Zeff and Characklis, 2013). A few 

studies have investigated using system inflows (Foster et al., n.d.) or a combination of inflows 
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and natural gas prices as an index instead of precipitation in order to minimize “basis risk” (low 

correlation between pay-offs and revenue losses), with considerable success. Inflows are partly 

effective, but the potential costs and effectiveness of financial insurance could be reduced if the 

index was more universal and able to be used by a wide range of stakeholders. Furthermore, 

previous studies have not needed to account for a long hydrological memory in a system in the 

implementation of a risk mitigation strategy. Finally, the potential impacts of climate change on 

these risk mitigation strategies have not been quantified. 

Hydrologic systems may have multiple stakeholders who are financially impacted by 

water resource variability. Developing a standardized index-based financial product that could be 

implemented by multiple stakeholders would have several advantages. For instance, the pricing 

of such a standardized product would only need to be done once, thereby lowering potential 

transaction costs. One such system with many stakeholders experiencing similar water-related 

risks is the Great Lakes-St. Lawrence Seaway, where hydropower producers, commercial 

shippers, marina owners, water utilities, etc. are all impacted by variability in lake levels (Brown 

et al., 2011; Gronewold and Stow, 2014; Lake Carriers Association, 2012).  

Climate change poses another difficult to quantify financial risk for stakeholders on the 

Great Lakes, making the effectiveness of measures taken to reduce risk uncertain. Pricing index-

based insurance relies on an extensive historic record to fully characterize the probability of 

different risks. If this historic record is no longer stationary, inaccurately priced contracts could 

result in financial losses for either the insurer or the insured party, dampening the risk mitigation 

benefits of such an insurance arrangement. While others are aware of this possibility (Berg et al., 

2009; Botzen and Bergh, 2008), relatively little work has explored the degree to which climate 

change uncertainty might impact these contracts. This analysis is crucial because financial 
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contracts have significant advantages over infrastructure solutions for climate adaptation because 

the contracts are flexible, short-term, and modifiable. 

The objectives of this study are fivefold: (1) model hydropower revenues at hydroelectric 

facility on the Niagara River and evaluate links between hydropower generation to Lake Erie 

water levels, (2) develop a system of financial contracts, based on Lake Erie water levels, and 

adapt them to the risk profile of the hydroelectric facility, (3) apply a pricing framework to the 

contracts, (4) test the efficacy and cost of these financial contracts by assessing portfolios of 

multiple contracts over a 100 year simulation of revenues, and finally, (5) evaluate the risk 

mitigation strategy under different climate change scenarios. These results should provide 

insights into how multiple stakeholders in large, interconnected systems can understand and 

mitigate financial risk during times of water scarcity. Such approaches will become even more 

critical as the impacts of climate change play a larger role in uncertainties surrounding water 

availability. 
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3 Methods 

3.1 Study Area 

The Great Lakes-St. Lawrence Seaway system serves as the location of some of the 

earliest hydroelectric projects in the world. Currently, 17 hydroelectricity projects operate on the 

Great Lakes-St. Lawrence Seaway, representing a total capacity of nearly 11 gigawatts (GW) 

(Sinclair et al., 2010). Of this, 2.3 GW are pumped storage facilities. The remaining 8.3 GW of 

production are located in four major areas: St. Mary’s River, Niagara River, the Welland Canal, 

and the St. Lawrence River (Table 1). The vast majority of the hydropower capacity in the 

system is located below Lake Erie on the Niagara River, due in large part to a more ideal 

topography (Figure 1) (Sinclair et al., 2010).  

 
Figure 1. Map of Lake Erie Outflows and Hydropower locations on the Great Lakes-

St. Lawrence Seaway 
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Table 1. Hydroelectricity capacity on the Great Lakes-St. Lawrence 
Seaway (Sinclair et al., 2010) 

Location 
Capacity 

(MW) 
% of 
total 

St. Marys River 114.6 1.32% 
Niagara River 4,681.0 53.80% 
Welland Canal 180.6 2.08% 
St. Lawrence River 3,724.0 42.80% 

 

 

In modeling the Upper Great Lakes, the Welland Canal and the Niagara River outflows 

are aggregated as the Lake Erie outflows. Lake Erie outflows exhibit a natural seasonal pattern, 

typically reaching a minimum monthly average flow in February and a maximum in May. The 

Welland Canal contributes relatively little to the overall flow, with approximately 142 m3/s of 

average flow. The Niagara River Water Diversion Treaty of 1950 governs the permitted flows 

into Niagara River hydropower plants, and requires a flow of 2,832 m3/s for Niagara Falls during 

the daylight hours of the tourist season (April to October), and 1,416 m3/s during the nighttime 

and non-tourist season (Hydropower Technical Work Group, 2011; Lee et al., 1998). 

There are two main hydroelectric facilities on the Niagara River, one Canadian and one 

American (Figure 1). Beck 1 and 2, on the Canadian side, has a combined capacity of 1,926 

MW (Sinclair et al., 2010). The maximum diversions from the Niagara River are 2,443 m3/s, or 

41 percent of the total average flow of the Niagara River. The Beck plant also has a small 

pumped storage facility consisting of 140 MW in capacity. On the American side, the primary 

hydropower facility is the Robert Moses Niagara Power Plant (Moses Plant), operated by the 

New York Power Authority (NYPA), a state owned electric utility. The plant has a generating 

capacity of 2,755 MW, with an additional pumped storage capacity of 240 MW, diverting 2,832 

m3/s, or 47 percent of the total average flow, from the Niagara River. Essentially, the Moses 
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Plant operates as a run of river hydropower facility, with limited peaking and ponding ability 

(Lee et al., 1998). The International Upper Great Lakes Study have set coping zones for this 

plant, positing that if Niagara River flow falls below 5,780 m3/s, the Moses Plant is not able to 

meet all of its contracts, and if flows fall to 3,820 m3/s, the plant might only be operating at 50% 

of average production (Hydropower Technical Work Group, 2011). 

3.2 Hydrology  

The hydrological modeling for this study was completed using the Coordinated Great 

Lakes Regulation and Routing Model (CGLLRM) (Clites and Lee, 1998). Developed by the US 

Army Corps of Engineers, the CGLLRM is based on a series of mass balance equations that uses 

Net Basin Supplies (NBS) for the drainage basin of each lake. The NBS is a water flux that 

includes direct precipitation, runoff, and evaporation. The historical residual net basin supply 

(NBS) data was used to develop for a 55,000 year stochastic dataset that maintained the same 

mean, variance, skew coefficient, autocorrelations, and cross correlations as the historical dataset 

(Fagherazzi et al., 2011b). This stochastic dataset is used to test different regulation plans for the 

upper Great Lakes, as well as Lake Ontario, and has also been used to study climate informed 

robustness indicators (Moody and Brown, 2013), as well as climate risk in the Great Lakes 

(Moody and Brown, 2012). 

Researchers employed a Contemporaneous Shifting Mean- Continuous time 

Autoregressive Moving Average (CSM-CARMA) model to replicate and expand an historical 

NBS dataset (Fagherazzi et al., 2011a), used in this work to generate the large number of 

observations needed to assess the conditional probabilities of monthly lake levels (see Section 

2.3) across a range of initial conditions. This model replicates the pattern of the historic net basin 

supplies, and the CSM-CARMA model was able to replicate the types of NBS shifts seen in the 
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historical data. Because of this ability to replicate the historical NBS, the results from the CSM-

CARMA model were used in the routing model to calculate the lake levels of the Great Lakes. 

Synthetic mean monthly lake level values were placed in 3 inch (7.62 cm) “bins” to 

calculate the probabilities of future lake levels conditioned on the current lake level. These bins 

also serve as a basis for the contracts developed later in order to simplify decision making 

processes by defining a more manageable number of possible contracts. For each lake, a different 

set of the bins was defined as each lake has different historical patterns and range of water levels.  

3.3 Conditional probability 

Due to its singular size, the Great Lakes system, unlike many other freshwater systems, 

has a long hydrologic “memory,” that is, it takes some time for lake levels to vary significantly. 

Historical lake levels are generally normally distributed but removing seasonal trends yields 

historic monthly data that exhibit statistically significant autocorrelations with lags up to eight 

months, correlations have been confirmed by Fagherazzi et al. (2005). Thus, the distribution of 

future lake levels will be highly influenced by the current level, at least over the first several 

years, making a single probability distribution function insufficient for characterizing the likely 

distribution of future lake levels. Characterizing robust conditional probability distributions of 

lake levels given a range of initial levels, however, requires much more information, therefore, 

55,000 years of stochastically generated monthly lake levels is used to produce a set of 

conditional probability distributions, thereby expanding beyond the narrower 108 year historical 

“snapshot.” Instead of using a continuous function, lake levels were discretized into three inch 

bins for both initial lake level and final lake level. Probability distributions conditioned on a 

single month are created for each month and lake level bin for each future month for one to 20 

years using this stochastic data.  
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3.4 Hydropower Modeling 

The Robert Moses Niagara Power Plant (RMNPP), with 13 generators and an installed 

capacity of 2,525 MW, is modeled using Lake Erie outflows and Lake Ontario levels as the main 

inputs (Figure 2). The relationships describing hydropower generation at the Moses Plant, drawn 

from the IUGLS Shared Vision Model, determine monthly generation (𝐸𝑖,𝑗) in month i and year j 

in megawatt hours (MWh) using Lake Erie outflows (𝑄𝐸𝐸𝐸𝐸
𝑖,𝑗 ) and Lake Ontario levels (𝐿𝑂𝑂𝑂

𝑖,𝑗 ) 

(Werick, 2012): 

𝐸𝑖,𝑗 = 24 × 𝑑𝑖𝐾𝐾𝐾𝑄𝑁𝑁𝑁𝑁
𝑖,𝑗 𝐻𝑖,𝑗        for 𝑖 = 1: 12 & 𝑗 = 1:𝑛𝑛𝑛𝑛𝑛𝑛   (1) 

𝑄𝑁𝑁𝑁𝑁
𝑖,𝑗 = Min �1

2
�𝑄𝐻𝐻𝐻𝐻𝐻

𝑖,𝑗 + 𝑄𝐷𝐷 − 𝐿𝐿𝐿�, 2860�    (2)  

𝑄𝐻𝐻𝐻𝐻𝐻
𝑖,𝑗 = 𝑄𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑖,𝑗 − 𝑄𝐸𝐸𝐸𝐸𝑖        (3) 

𝑄𝑁𝑁𝑁𝑁𝑁𝑁𝑎
𝑖,𝑗 = 𝑄𝐸𝐸𝐸𝐸

𝑖,𝑗 − (𝑄𝑀𝑀𝑀𝑀,
𝑖 + 𝐷𝐷𝐷)      (4) 

𝐻𝑖,𝑗 = 𝐸𝐶𝐶𝐶𝐶 − �𝑄𝑁𝑁𝑁𝑁
𝑖,𝑗 �

2
𝐶𝑤𝑤�

− 𝑇𝑇𝑖,𝑗     (5)  

𝑇𝑇𝑖,𝑗 = 𝐶1 + 𝐶2𝑄𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑖,𝑗 + 𝐶3𝐿𝑂𝑂𝑂

𝑖,𝑗       (6) 

where, 

𝑑𝑖 = Number of days in month i 

𝐾 = Constant (1.356×10-6 MW/(ft.-lb./sec.)) 

𝛾 = Specific weight of water (62.4 lbf/ft.3) 

𝑒 = Average efficiency of Moses Plant turbines (91.2%) 

𝑄𝐷𝐷 = DeCew hydropower flows (ft.3/s) 

𝐿𝐿𝐿 = Long Lac/Ogoki diversion (ft.3/s) 

𝑄𝐸𝑁𝑁𝑁𝑖 = Environmental flows for month i (ft.3/s) 
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𝑄𝑀𝑀𝑀𝑀.
𝑖 = Miscellaneous fixed monthly flows (ft.3/s) 

𝐷𝐷𝐷 = Non-hydropower DeCew flows (ft.3/s) 

𝐸𝐶𝐶𝐶𝐶 = Elevation of Chippawa-Grass Island Pool (ft.) 

𝐶𝑤𝑤 = “Waterways coefficient” (420 ft.2/s) 

𝐶1 = Regression constant (65.7 ft.) 

𝐶2 = Regression constant (5.0985×10-5 sec./ft.2) 

𝐶3 = Regression constant (0.712332 ft.) 

 
Figure 2. Schematic of hydropower modeling. 

The flow equations describe how the Lake Erie outflows are apportioned, with some 

going to maintain flow over the Niagara Falls (𝑄𝐸𝐸𝐸𝐸𝑖 ), the American hydropower facilities 

(𝑄𝑁𝑁𝑁𝑁
𝑖,𝑗 ), the Canadian hydropower facilities (𝑄𝐷𝐷 and Sir Adam Beck Hydropower flows, not 

shown), and others (𝑄𝑀𝑀𝑀𝑀.
𝑖  and 𝐷𝐷𝐷). The Long Lac and Ogoki diversions are diversions from 

other Canadian watersheds into Lake Superior, and to meet treaty obligations, they are removed 
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from the Erie outflows when apportioning the flow to the U.S. and Canada hydropower 

producers. The tail water calculation (Equation 6) was developed by the NYPA to estimate the 

water level at the output of the Moses plant from the Lake Ontario levels (𝐿𝑂𝑂𝑂
𝑖,𝑗 ) and the flow in 

the Niagara River (𝑄𝑁𝑖𝑖𝑖𝑖𝑖𝑖
𝑖,𝑗 ) (Werick, 2012). 

The primary output of these equations (𝐸𝑖,𝑗), assumes the plant is operating 24 hours a 

day, every day of the month. While this would be a poor assumption for many hydropower 

plants, where they act as peaking resources for when electricity is most in demand, the Moses 

plant has limited peaking capability, and operates largely as a run of river hydropower plant. 

Once monthly energy values are calculated, then each month’s generation is multiplied by the 

New York Independent System Operator (NYISO) average marginal cost of 1 MWh of 

production to obtain monthly revenues (NYISO, 2014) (Equation 7). 

𝑅𝑅𝑅𝑖,𝑗 = 𝐸𝑖,𝑗 × 𝑃𝑟𝑟𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑖           for 𝑖 = 1: 12 & 𝑗 = 1:𝑛𝑛𝑛𝑛𝑛𝑛     (7) 

where, 

𝐸𝑖,𝑗 = Modeled monthly generation at the Moses plant (MWh) 

𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑖 = Mean monthly NYISO marginal cost ($/MWh) 

While these equations are a substantial simplification of the hydropower facility 

operations, generation data from the NYPA suggest relatively good agreement over the period 

1965-2005 (Figure 3), slightly over-predicting generation in years when the average flow is 

either very high or very low in the Niagara River. Overall, the model deviated from the historic 

generation by an average of 2.25 percent of mean historic generation. 
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Figure 3. Comparison of modeled and observed generation data from NYPA, 1965-2005. 

3.5 Binary Contracts 

 Index-based hedging contracts typically have a scaled, continuous payout function that is 

triggered by the strike and increases as the index declines (Figure 4). Many analyses use a basic 

index insurance structure with a continuous payout function, where payouts increase linearly 

with a decreasing index value (Skees et al., 2007). Indices can be constructed from a single 

meteorological variable, such as rainfall (Stoppa and Hess, 2003), from a hydrological variable, 

such as reservoir inflows (Brown and Carriquiry, 2007; Foster et al., in review.; Zeff and 

Characklis, 2013), or from some combination of explanatory variables, such as reservoir inflows 

and natural gas prices (Kern et al., in review).Similar to traditional index insurance, payouts for 

binary contracts are triggered by a strike value, but the payouts do not increase if the index falls 

below the strike (Figure 4). In this case, if the mean lake level 𝐿𝑖 is below the strike value for the 
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target month, the contract will be exercised and contract holder will receive the onetime payout 

𝛱, such that 

𝑃(𝐿𝑖) = �𝛱  𝑖𝑖 𝐿𝑖 ≤ 𝑆𝐿
0     𝑜.𝑤.

       (8) 

where,    

𝛱 =   Payout magnitude ($)      

𝐿𝑖 =   Mean lake level (m. or ft.)     

𝑆𝐿 =  Strike value (m. or ft.)      

𝑃(𝐿𝑖) =  Payout at lake level 𝑙 ($) 

 

 
Figure 4. Traditional Indexed Insurance Contract and Binary contract 

There is little evidence that binary contracts have been used for weather or environmental 

related applications, nonetheless, these contracts have some advantages over other options, 

namely their flexibility and ease of pricing. When the payout of the contract is standardized and 

small, multiple contracts can be bought to create many different portfolios of contracts that can 

hedge a variety of financial risks of differing magnitudes and relationships with the underlying 

index. In contrast to traditional index insurance contracts, these binary contracts could be more 

easily used by other industries, including commercial shipping, marinas, and real estate, to 
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mitigate financial risk from lake level variability. In this way, the buyer can easily tailor the 

portfolio to suit almost any desired risk management level. In fact, it has been shown that 

identical contracts can be useful in insuring against low water levels for shippers on the Great 

Lakes (Meyer et al., in preparation). However, it should be noted that binary contracts require 

the buyer of the contract (i.e. the hydropower producer) to be more knowledgeable with respect 

to its own exposure to the underlying risk because the firm will decide how many contracts to 

buy at each strike.  

3.6 Basis risk 

Basis risk is a measure of the lack of correlation between contract payouts and insured-

against losses. It is often employed in insurance and financial risk management literature as an 

efficacy measure for a product or hedging strategy, and is commonly expressed as a coefficient 

of determination (R2) (Vedenov and Barnett, 2004). A lower basis risk indicates a more effective 

hedging product, one in which the payouts from the insurer and losses by the insured are highly 

correlated. Current weather-related indexed products can exhibit a wide range of variability in 

basis risk, from R2 = 0.2 for some forms of agricultural precipitation-based index insurance to R2 

= 0.9 for some forms of temperature based weather derivatives (Baethgen et al., 2008; Foster et 

al., n.d.; Manfredo and Richards, 2009; Norton et al., 2010).  

Reservoir inflows have been identified as an important, but not always singularly 

effective index for hydropower revenue insurance contracts in other contexts (Foster et al., n.d.; 

Kern et al., n.d.), primarily because of inflow’s strong relationship to hydropower generation. 

The fact that inflows are typically measured in a reliable and transparent manner by government 

agencies, and difficult to manipulate by either buyer or seller, reduces concerns over moral 

hazard as well. In a system as large as the Great Lakes, another option for the index is the lake 
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level immediately upstream of the hydropower generating station, which is also measured 

reliably and transparently by NOAA, while also being difficult to manipulate. In this work, both 

lake outflows and lake levels were investigated for use as potential indices (Figure 5). In the 

case of the Moses Plant, the level of Lake Erie shows a strong relationship with monthly 

revenues, resulting in a coefficient of determination (R2) of 0.573 overall, with even higher R2 

when disaggregated by month (Table 2).  While inflows may be a better index strictly 

statistically speaking, using lake level as the index allows for the creation of a contract that can 

be developed and priced once and used by multiple stakeholders, thereby making this risk 

mitigation strategy potentially less costly overall, despite an increase in basis risk. 

 
Figure 5. Comparing July Lake Erie outflows (panel one) and Lake Erie levels (panel 2) as 
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potential indices for binary contracts. 
Table 2. Correlations between Lake Erie levels and Moses hydropower revenues 

Month Coefficient of 
Determination (R2) Mean Level (ft.) Standard 

Deviation 
January 0.931 570.72 0.914 
February 0.902 570.84 0.871 
March 0.965 571.15 0.853 
April 0.957 571.58 0.873 
May 0.967 571.85 0.883 
June 0.934 571.93 0.880 
July 0.978 571.85 0.885 
August 0.980 571.62 0.862 
September 0.982 571.31 0.842 
October 0.955 570.99 0.844 
November 0.943 570.75 0.861 
December 0.949 570.69 0.921 

 

3.7 Contract Pricing 

Developing and incorporating an internally consistent pricing methodology allows for 

comparison between different contracts and strategies. Pricing of insurance and derivative 

contracts can be done in a variety of ways, but all contracts are typically priced in a manner that 

combines the expected value of contract payouts with some contract “loading” added to account 

for return on investment, administration, marketing, and risk (Nekritin, 2013), such that   

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝑉𝑉𝑉𝑉 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿      (9) 

The value of the loading term is calculated using different methods, depending upon the specifics 

of the insurance application. Where risk is transferred (i.e., catastrophe bonds), the risk 

component might constitute a majority of the loading. Because risk distributions with “fat tail” 

risk (i.e., low frequency, high consequence events) will have a higher loading in this pricing 

paradigm, which is important because these types of risks require the insurer to maintain 
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accessible or liquid reserves, which earn a lower return on investment than less liquid reserves 

that can be used to meet capital requirements for other classes of insured risks. 

In actuarial analyses, a commonly accepted suite of “premium principles,” ranging from 

expected payouts to complex combinations of variance, expected value, and other attributes of 

the payouts, are employed to price new insurance instruments (Young, 2006). The Wang 

Transform is an actuarial method for producing a “risk neutral” distribution of prices for risk 

hedging contracts. This is in contrast to a financial pricing model that relies on an underlying 

tradable index, such as the Black-Scholes approach, because the index in this case (i.e. lake 

level) is not commonly traded, and has no pricing information, so cannot be used to produce a 

replicating portfolio (Richards et al., 2004). The Wang Transform combines financial and 

actuarial pricing methods and weights low probability events more than higher probability 

events, producing a variable loading level across the distribution of events, such that 

𝑆∗(𝑥) = Φ�Φ−1(𝑆(𝑥) + 𝜆)�       (10) 

where,          

 𝜆 = 𝐸�𝑟𝑝−𝑟𝑓�
𝛽

         (11) 

and, 

𝑆∗(𝑥) = “Risk neutral” probability distribution 

Φ =   Cumulative normal distribution 

Φ−1 =  Inverse cumulative normal distribution 

𝑆(𝑥) =  Original probability distribution function 

𝜆 =   Sharpe ratio (i.e., the “market price of risk”) 

𝑟𝑝 =   Rate of return on the portfolio 

𝑟𝑓 =  “Risk free” rate 
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𝛽 =  Measure of the correlation between the portfolio returns 

and market returns 

The Sharpe ratio is the operative term in this relationship and is used in finance to 

compare investments and their expected returns relative to their riskiness. For conventional 

financial portfolios, the Sharpe ratio is calculated using a rate of return on the portfolio and the 

correlation between the portfolio and the overall market returns. The Sharpe ratio for contracts 

based on lake levels or any other environmental index cannot be calculated this way, so it is 

instead estimated based on values derived from currently active weather derivative markets 

(Wang, 2002). A Sharpe value of 0.25 has been used to price other weather-based contracts 

(Foster et al., n.d.; Wang, 2002). When the Sharpe ratio is set to zero, the Wang transform 

produces the original probability distribution, and therefore applies no risk loading to contracts. 

Increasing the Sharpe ratio increases the implied probability of low frequency events and 

subsequently decreases the implied probability of high revenue events. The Wang transform 

effectively gives contracts with very low probability of payouts a higher loading (120%-90%) 

than contracts with a higher probability, which have risk premiums of 50 to 29% (Figure 6). 

Each individual contract is specified by the lake, time to maturity in years, month, initial lake 

level in three inch increments, and strike level, also in three inch increments. Furthermore, 

contracted expected values were discounted before the loading was added based on the number 

of years to maturity with a discount rate of 4%. 
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Figure 6. Effect of Sharpe ratio (λ) on Wang transformed price and loading for $1,000 in 
coverage on Michigan-Huron for two years in advance, with a beginning level of 576.2 feet. 

3.8 Contract Portfolios 

Portfolios of contracts were constructed with target payout frequency of 0.02, 0.05, 0.10, 

0.20, and 0.33 (Scenarios A-E, respectively). A portfolio of contracts consists of binary contracts 

bought several years in advance with a different “sub-portfolio” for each month in the insured 

year. The distribution of contracts is analogous to the slope of the traditional indexed insurance 

(put option) for each individual month, while the initial strike price is the intercept of a put 

option (Figure 7).    

 
Figure 7. Portfolio of binary contracts replicating traditional indexed insurance 
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3.9 Climate Change Scenarios 

Climate change poses a potential problem for the insurance industry, especially for 

insuring environmental risks, such as water resources, because of their direct connection to the 

climate. Much of the actuarial analyses used to price insurance contracts implicitly assumes 

stationarity, and these binary contracts are no different in that respect. While considering climate 

change in designing an insurance tool introduces uncertainty, testing the sensitivity of this risk 

mitigation measure to different possible climate change scenarios can provide a sense of how the 

strategy may be impacted by a changing climate.  

To develop possible future impacts of climate change on the water resources and levels of 

Lake Erie, the stochastic dataset was parsed into three different climate change impacted 

regimes, based on a published study of the potential impacts of climate change on Great Lakes 

water levels (Hayhoe et al., 2010). Annual mean Lake Erie levels from 2010 through 2039 were 

predicted to fall approximately 0.05 m relative to historic lake levels, approximately 0.38 m. 

during 2040-2069, and 0.41 m. between 2070 and 2099 (Table 3) (Hayhoe et al., 2010). The 

study did not provide predictions about variance in lake levels, but in parsing the stochastic data, 

the variance has decreased with respect to the historical variance. Using the prices for the 

portfolios based on the historic distribution of lake levels, the performance of all 5 portfolios was 

evaluated from the perspective of both the insurer and the insured. 

Table 3. Description of climate change scenarios 

Scenario 

Lake Erie Monthly Level Lake Erie Monthly Outflow 
Mean Variance Mean Variance 

Historical 174.15 0.0898 6,017 383,000 
2010-2039 174.10 0.0739 5,913 307,454 
2040-2069 173.80 0.0768 5,286 295,710 
2070-2099 173.79 0.0798 5,260 309,744 
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4 Results 

4.1 Revenue Behavior 

The monthly electricity generation at the Robert Moses Niagara Power Project (RMNPP) 

was calculated using 100 years of simulated data. When aggregated to an annual time step, the 

mean revenue is $617.8 million, with a standard deviation of $73.7 million (Figure 8). This 

annual variability corresponds to a $105.8 million difference between the 75th ($675.3 million) 

and 25th ($569.5 million) percentiles. Furthermore, monthly revenues follow a general seasonal 

pattern, with the highest mean in July and the lowest mean revenue in October. This revenue 

variability means that in 5 percent of years, shortfalls relative to the mean annual revenue will be 

at least $114.6 million, representing a significant financial risk for the hydropower producer. 

 
Figure 8. Empirical CDF of Annual Moses Plant revenues using 100 year simulation 
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4.2 Portfolio Characteristics 

When the five portfolios are created, the initial strike level (i.e. the highest lake level at 

which the portfolio pays out) is determined such that the expected payout frequency in each 

month matches the target payout frequency (Table 4). For instance, if the target payout 

frequency is 0.02 (i.e., a 1 in 50 year event), the expected payout frequency for each monthly 

contract in that year is 0.02, even as the magnitude of the payout will vary with any further 

reductions in lake level, given that the portfolio also contains contracts with lower strike levels. 

As a result of the natural variability in Lake Erie levels, initial strike levels for the summer 

months are higher relative to the other months (Figure 9). The number of contracts bought at 

each strike level replicates the slope of a traditional indexed insurance contract. For instance, for 

every 3 inches (the standardized bin size) of coverage in January, an additional 2,183 contracts 

($21,830) in additional coverage are needed to replicate the traditional indexed insurance 

contract. 

 
Figure 9. Initial strike levels for each portfolio of contracts. 
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Table 4. Summary of Portfolios, with numbers in parentheses representing the target 
probability of payout. 

Month 

Number 
of 

Contracts 

Portfolio Initial Strike Level (ft.) 

A (0.02) B (0.05) C (0.1) D (0.2) E (0.33) 

January 2,183 569.3 569.3 569.55 570.05 570.55 
February 1,913 569.3 569.55 569.8 570.3 570.8 
March 1,977 569.8 570.05 570.05 570.55 570.8 
April 1,923 570.3 570.3 570.55 571.05 571.3 
May 1,879 570.3 570.55 571.05 571.3 571.55 
June 2,079 570.3 570.55 571.05 571.55 571.8 
July 2,525 570.3 570.8 570.8 571.3 571.8 
August 2,318 570.3 570.3 570.55 571.05 571.55 
September 1,953 569.8 570.05 570.3 570.8 571.05 
October 1,829 569.55 569.8 569.8 570.55 570.8 
November 1,842 569.3 569.55 569.8 570.05 570.55 
December 1,950 569.3 569.3 569.55 570.05 570.55 

4.3 Portfolio Performance 

The performance of the five portfolios on annual hydropower revenues demonstrates the 

risk mitigation possibilities of lake level based binary contracts (Table 5). The Risk Mitigation 

Level metric was used to compare the efficacy of different portfolios, which is defined as the 

ratio between minimum annual revenues with and without insurance (Foster et al., n.d.). Over a 

100 year simulation, Portfolio A raised the annual revenue floor from $448.5 to $482.9 ($34.4 

million), for a Risk Mitigation Level of 1.077 (Table 5). To achieve this risk mitigation, the 

overall cost, defined as the percentage reduction in mean revenues after the contract is applied to 

the simulation, is 0.14% of mean revenues. Corresponding metrics for the other two portfolios 

show an increasing frequency of payouts, as well as an increase in the total payouts and overall 

cost. Compared to other studies of index-based insurance products for hydropower producers, 

these risk mitigation levels and costs are much smaller for similar payout frequencies (Foster et 

al., n.d.; Kern et al., n.d.). The lower costs and impacts are a result of the much higher mean 
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revenue and lower annual variability in revenues experienced by the Moses Plant compared to 

the relatively small hydropower producers in the southeastern United States that were the subject 

of the earlier investigations. 

Table 5. Portfolio Performance Summary 

 A B C D E 
Target Payout 

Frequency 0.02 0.05 0.10 0.20 0.33 

Loading 42.9% 46.4% 25.3% 22.1% 19.1% 

Risk Mitigation 
Level 1.077 1.091 1.128 1.176 1.196 

New Revenue Floor 
(millions) $482.9 $489.4 $505.8 $527.2 $536.3 

Revenue Floor 
Increase (millions) $34.37 $40.95 $57.31 $78.73 $87.80 

Cost (% decrease in 
mean revenues) 0.14% 0.23% 0.24% 0.53% 0.82% 

 

The potential impact of these portfolios on annual net revenues is highlighted by plotting 

100 years of simulated data for three of them, A, C, and E, with target payout frequency of 0.02, 

0.10, and 0.33, respectively (Figure 10). For each portfolio, uninsured revenues (dashed blue) 

exhibit a lower revenue floor (minimum annual revenue) than the insured revenues (solid black). 

As a result of the purchase of the portfolio, the insured revenues are reduced in years when the 

portfolio doesn’t pay out, most obvious with the higher cost of Portfolio E. The frequency and 

magnitude of the payouts (Figure 10; bottom panel) demonstrate how each portfolio performs 

and the reason why Portfolio E is more costly than the other two portfolios (Figure 11). 
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Figure 10. Simulations of three portfolios (A, C, and E; from top to bottom) with dotted 

lines for the new payout floors. The bottom panel contains simulate payouts for Portfolio A 
(white), C (light green), and E (dark green). 

 

A 
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Figure 11. Payouts and premiums for binary contract portfolio A (white), C (light green 

and light red), and E (dark green and dark red). 

One important aspect of this risk mitigation strategy is the variability in portfolio price, 

depending on the initial lake level at the time of purchase, as well as the number of years until 

the maturity date of the contract portfolio. Because of the serial correlation between lake levels, 

the portfolio price is in part a function of the initial lake level (Figure 12). For Portfolio A, when 

levels fall below 569 feet (4th percentile), the portfolio price reaches approximately $10 million 

dollars, while the portfolio price nears zero when the initial lake level reaches the maximum (573 

feet). This relationship holds for all 5 portfolios over the range of initial conditions (Figure 13). 
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Figure 12. The impact of Lake Erie levels on the price of Port. A, purchased 5 yrs. in advance. 

 
Figure 13. Relationship between initial lake level and portfolio price, purchased 5 yrs. in 

advance. 
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Not only does the initial lake level affect the price of the portfolio, but so too does the 

maturity date of the contract (Figure 14). Purchasing Portfolio A, which is designed to payout at 

the 2nd percentile, is inexpensive when bought one to three years from maturity, especially if 

levels are at or higher than the mean (50th and 75th percentiles), but the price increases if the 

portfolio is bought further from maturity. Similarly, the price of the portfolio increases for 

several years, before beginning to fall after five years when the initial level is at 10th percentile. 

In other words, if the initial level is at the 10th percentile, a portfolio bought for five years in the 

future is more likely to pay out than one bought for two years in the future or one bought for nine 

years in the future. 

 
Figure 14. Time to maturity and annual cost of Portfolio A. 
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4.4 Climate Change 

Testing these portfolios under the three different climate change scenarios reveals 

potential impacts of climate change on both the insurer (Figure 15) and the insured (Figure 16). 

The loading of each portfolio was calculated using each climate change scenario (Figure 15), 

which demonstrates that if the underlying distributions upon which pricing is based are not 

somehow updated, then in the long term, loading will become negative (i.e., payouts will exceed 

premiums). Unexpectedly, the 2010-2039 scenario has a much higher predicted loading, 

suggesting that the portfolios will pay out more frequently and with greater magnitude than 

expected. This could be a result of the decreased variance in this scenario. For the insured party 

(i.e., NYPA), the risk mitigation levels increase for each portfolio as the lake levels and 

corresponding Lake Erie outflows shift due to climate change (Figure 16). This result 

demonstrates that while the contracts may have uncertain costs, they will continue to raise the 

revenue floor under the climate change scenarios. It is important to note that the climate 

scenarios examined here represent the worst realistic case scenarios for the next 85 years. Other 

studies of the potential impacts of climate change on Great Lakes lake levels have shown a much 

less drastic change in lake levels (Angel and Kunkel, 2010; Lofgren and Gronewold, 2013; 

MacKay and Seglenieks, 2012; McBean and Motiee, 2008). 
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Figure 15. Impact of three different climate scenarios on realized loading of five portfolios.  

 
Figure 16. Climate Change Impacts on Risk Mitigation Level. 
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4.5 Discussion 

This analysis suggests that hydropower operators can utilize portfolios of index-based 

binary contracts to effectively reduce the threat of low revenue periods incurring costs. While 

other studies have shown the ability for inflows or precipitation to be used as a basis for index-

based insurance product, this work has demonstrated that for hydropower producers on the Great 

Lakes, lake levels can also provide an efficacious index on which to base an insurance contract. 

The limitations of this study include the fixed pricing of electricity and the simplification 

of the hydropower modeling. In other studies, the price of electricity has been shown to 

significantly impact the basis risk of the indexed insurance (Kern et al., n.d.). The hydropower 

modeling has also been significantly simplified, and while generation on the annual level 

matches historical generation fairly well, monthly historic generation data is not available at this 

time. Finally, the process of parsing levels into three inch bins will also contribute a small 

amount of basis risk to the product, but at a level that does not significantly impact the overall 

basis risk. 

The threat of climate change does pose a significant problem for binary contracts, like 

any financial contracts whose prices are determined by assuming stationarity in existing data. 

However, portfolios of binary contracts may still be advantageous in reducing the risks 

associated with an uncertain climate, particularly because of their flexibility and low costs 

relative to the alternatives, which often involve large capital expenditures. The impacts of 

climate change on the Great Lakes are expected to be gradual, so 5 to 10 year contracts will be 

able to be deployed in a more flexible manner than physical infrastructure improvements. 

Understanding how these risk mitigation strategies could be deployed to mitigate the impacts of 

climate change is an ongoing process but shows considerable promise. Developing metrics and 
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tools for assessing the vulnerability of such index-based products will improve understanding of 

how index-based insurance will perform in the future. 
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5 Conclusions 
 

The goal of this work, in part, is to determine the feasibility of developing an index-based 

insurance product for use on the Great Lakes. The variety of economic interests that depend on 

the water resources of the Great Lakes (hydropower producers, commercial shippers, marina 

owners, etc.) motivated the development of a single indexed methodology that could be deployed 

in a variety of contexts. By using binary contracts with lake levels as the index, this work has 

shown that portfolios of such contracts can be an effective and relatively cost effective way of 

reducing financial risk from drought for hydropower producers on the Great Lakes. Climate 

change looms large in any discussion of water availability in the Great Lakes region, and while 

deep uncertainties exist about the direction and magnitude of changes in lake levels due to 

climate change, a sensitivity analysis of indexed-based insurance portfolios demonstrate their 

resilience to a changing underlying climate regime, while also being a flexible option for 

mitigating climate risk. 
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