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ABSTRACT 
 
Benjamin T Foster: Managing Water Supply Related Financial Risk in Hydropower Production 

with Index-based Financial Instruments 
(Under the direction of Gregory Characklis) 

 

Hydropower generators rely on stream flows to serve as “fuel,” which can lead to 

volatility in revenues that is financially disruptive.  This vulnerability to hydrologic uncertainty, 

and the possibility of increased hydrologic variability in the future, suggests that hydropower 

producers need new tools for managing these financial risks. This study uses an integrated 

hydro-economic model of the Roanoke River Basin to characterize the financial risk faced by 

hydropower generators as a result of changes in water supply. Several index-based financial 

instruments are developed and evaluated using 100-year simulations of Kerr, Gaston and 

Roanoke Rapids Dam operations.  Index basis risk, pricing, and contract design are all explored. 

Contracts built on average daily inflow are shown to be capable of reducing water supply risk at 

a range of levels, with even significant levels of risk (i.e. inflows under 75% of average) 

mitigated at a relatively low cost (under 3% of average revenues). 
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1. INTRODUCTION 

Hydropower is a particularly valuable part of any electricity generation portfolio.  

Compared to many thermal forms of generation (e.g. coal, nuclear, natural gas), hydropower has 

short ramping times (i.e. speed with which generators can be turned on and off without 

efficiency losses) and low marginal costs.  As such it is an ideal and inexpensive source for 

meeting peak electricity demands and providing a variety of ancillary services necessary for 

smooth operation of the electric grid (Perekhodtsev and Lave, 2005; Key, 2013). Its adaptability 

also means that hydropower is an effective complement to other, more intermittent, renewable 

sources (e.g. solar, wind). 

The primary raw input for hydropower generation is water, arriving primarily in the form 

of stream flow; however, reliance on such a highly variable hydrologic factor can be financially 

disruptive.  While reservoir storage provides some buffer, persistent low stream flow periods 

translate to less electricity generation and lower revenues. The financial impact of low flow 

periods can also be magnified in cases where reductions in generating capacity are correlated 

with peak electricity demands (e.g. summer months in the Southeast United States) (Sobolowski 

and Pavelsky, 2012).  As hydropower is frequently used as a peaking source (due to its short 

ramping times), reductions in generation during periods when peak prices are high, and a 

generator must resort to alternative peaking sources (usually natural gas-fired plants), can be 

especially costly.  The financial impact of hydrologic variability, and the possibility of increased 

variability in the future (e.g. climate change), suggests that hydropower producers need new 
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tools for managing their financial risk (Bates et al., 2008; Botzen and van den Bergh, 2008; 

Mills, 2012). 

1.1 Financial Risk in Hydropower Generation 

Electricity generators face a variety of financial risks, some of which can be mitigated 

using financial contracts.  In general, the overall objective when using financial contracts is to 

lower variability in costs and revenues.  “Price risk”, related to uncertainty over future electricity 

prices, and “demand risk,” related to uncertainty over future demand (e.g. reductions in 

electricity use during a cooler than average summer), can both be hedged using financial 

contracts. Tools for hedging price risk, such as future and forward contracts on electricity price 

are in common use (Deng and Oren, 2006). Instruments for mitigating demand risk also exist, 

typically in the form of temperature-indexed (heating/cooling degree days) contracts (Mathews, 

2011) designed to take advantage of the strong correlation between temperature and electricity 

demand (and the resulting revenues).  This correlation is largely a function of the energy used to 

heat and cool buildings.  Electric utilities also manage their “input risk”, mostly related to fuel 

cost, via futures/forward contracts on inputs such as coal or natural gas.  For a utility with 

diverse generation portfolio, this practice results in a more stable overall generation cost ($/kwh), 

an important consideration for regulated utilities that cannot alter consumer prices quickly or 

easily. 

In hydropower production, input risk is more challenging to address because the rate at 

which water (i.e. fuel) flows into the reservoir is a result of natural processes that cannot be 

reasonably controlled, exposing generators to hydrologic variability. There have been some 

attempts at designing simple contracts to mitigate hydropower revenue losses, but few attempts 

to investigate their performance, and no evidence of any relevant exploration in the academic 
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literature (Hyman, 2001; Cao et al., 2004; Economist, 2012).  One of the only publically 

available detailed descriptions of one of these contracts is an index-insurance contract between 

the Sacramento Municipal Utility District and Aquila Energy from 2000-2003 (Business Wire, 

2000). This contract utilized a precipitation-based index to trigger payouts, with payout size 

linked to natural gas prices (the likely alternative when hydro production declines). In an 

academic investigation, Keppo (2002) explored the development of an optimal hedging strategy 

for hydropower producers using a hypothetical precipitation-based weather contract, but the 

actual structure of the contracts is not specified (i.e. they are simply assumed to be effective).  

Although thorough evaluations of contract performance are nonexistent, water supply risk 

contracts are available. There are a number of insurance and reinsurance firms who are writing 

contracts for water supply risk in hydropower production and, in 2012, SwissRe received the 

Weather Risk Management Transaction of the Year award from Environmental Finance, a trade 

publication, for a precipitation-based hydropower contract with Guangdong Meiyan Hydropower 

(Swiss Re, 2012). 

While there are still few examples in hydropower, several other sectors that are 

financially vulnerable to water supply have developed and evaluated contracts based on 

physically measurable hydrologic indices (or combinations of indices) (Brockett et al., 2005). 

Brown and Carriquiry (2007) found that reservoir inflow index insurance contracts were partially 

effective in reducing the impact of high costs incurred when a community had to pay to augment 

its water supply during drought. Recent research has also explored the development of index 

insurance contracts for mitigating water utility revenue losses arising from conservation 

measures (e.g. outdoor watering restrictions) imposed during drought (Zeff and Characklis, 

2013).  
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Sectors vulnerable to other weather related risk have also used index-based contracts.  

For agricultural applications many contracts use temperature and/or rainfall based indices to 

hedge against the financial impacts of a reduction in crop yield (Barnett and Mahul, 2007; 

Stoppa and Hess, 2003; Turvey, 2001; Tannura et al., 2008; Manfredo and Richards, 2005).  

Some of these contracts perform well, nevertheless, the “basis risk” (a measure of the correlation 

between financial losses and the index) associated with them can be large and has been shown to 

vary significantly with both crop type and geography (Vedenov and Barnett, 2004).  More 

complicated or creative indices can lower basis risk as they can better account for specific local 

conditions. Sometimes more creative indices are also required when datasets are limited.  For 

example, because of both data availability and basis risk considerations, index insurance 

contracts built on a climate index (specifically one related to the El Nino-South Oscillation 

climate pattern) have been investigated for flood insurance applications in Peru (Khalil et al., 

2007). 

1.2 Hedging Financial Risks in Hydropower  

While there are many specific motivations for a hydropower firm to manage its financial 

risk (e.g. location, risk preferences, regulatory environment), there are some more general 

reasons why hedging activity may occur.  Firms owning hydropower resources could face two 

broad circumstances, either (1) hydropower is a substantial portion of their generation portfolio 

or (2) hydropower is a small part of a diverse generation portfolio.  Depending on the case, 

hedging water supply risk would primarily (though not exclusively) serve different purposes.  In 

case (1), a firm’s revenues would be substantially linked to hydropower generation, therefore 

hedging might lower costs of capital, lower default risk, or increase share values (Minton and 

Schrand, 1999).  In case (2) the adverse impacts of reduced generation are less dramatic, but 
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hedging hydrologic risk could be an effective cost hedge (similar in motivation to hedges against 

fuel cost risk) against scenarios in which a utility must produce or purchase peaking power 

generated by more expensive sources (e.g. natural gas).  

This study characterizes the financial risk faced by hydropower generators as a result of 

changes in water supply and then develops and evaluates several new index-based financial 

instruments to mitigate this risk. To design and evaluate a set of specific contractual solutions to 

hydrologic financial risk, an integrated hydro-economic model is developed to simulate 

hydropower operations on the Roanoke River (Roanoke) in Virginia and North Carolina.  The 

model uses a 100-year stochastic dataset of stream flows and produces estimates of hourly 

hydropower release schedules and related generation revenues for three hydropower facilities 

that sit in series on the Roanoke. Several types of stream flow indices are explored in terms of 

their potential to serve as the basis for hedging contracts and an actuarial model is used to price 

them.  Once priced, the contracts are evaluated based on their ability to mitigate the financial risk 

associated with highly variable revenues.  Two contractual frameworks, index insurance and 

standardized binary, are evaluated. In the index insurance framework, contracts are designed to 

be written between two parties and provide all of the desired coverage in a single transaction.  In 

the standardized binary framework, smaller discrete contracts are available with a defined payout 

at a variety of index thresholds, providing a hydropower generator with the building blocks to 

customize a range of desired coverage levels. 
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2. METHODS 

2.1 Roanoke River Basin 

The Roanoke River begins in the Blue Ridge Mountains of western Virginia and ends in 

the Pamlico Sound of North Carolina.  This research focuses on a series of three dams on the 

Roanoke near the border of NC and VA (see Figure 1).  The furthest upstream of the dams is 

John H. Kerr Dam (Kerr), built in 1953 by the U.S. Army Corps of Engineers (USACE) for 

flood control and hydropower production.  Just downstream are Gaston Dam (Gaston), 

constructed in 1963, and Roanoke Rapids Dam (Roanoke Rapids), constructed in 1955, which 

are both owned and operated by Dominion Virginia Power (Dominion). Dominion is a part of the 

PJM Interconnection (PJM), a regional transmission organization and deregulated electricity 

market operating in the mid-Atlantic region of the United States.   

 

Figure 1: Roanoke River dam locations 
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2.2 Water and Power Model 

An integrated hydro-economic model (described here and in further detail by Kern et al, 

2012) is used to simulate the operations of the three dams using the current hydropower 

generation regime. The outputs from the model (power production and the commensurate 

revenues) are used to characterize the financial risk faced by the dam operators in the system and 

design and price various contract structures.  

2.2a Water Flow Model 

Kerr is managed by USACE with hydropower generation operated to benefit both 

designated federal customers of the Southeastern Power Administration (SEPA) and Dominion 

customers.  In order to accomplish its management goals, which also include flood control and 

recreation, the USACE uses a guide curve and a set of management rules (related to elevation, 

time of year, and inflows) to set weekly reservoir release quantities (i.e. “declarations”). Within 

each week, however, dam operators have substantial discretion as to the timing and magnitude of 

releases. 

 The two downstream reservoirs (Gaston and Roanoke Rapids) are managed mostly for 

hydropower and recreation.  Since there is very little free flowing water between the three 

reservoirs, releases from one spill almost directly into the next.  Water levels in the two 

downstream reservoirs are also maintained within tight bounds (the shores of both reservoirs are 

highly developed). Therefore both are operated essentially as “run-of-Kerr,” meaning whatever 

is released from Kerr will be released from both Gaston and Roanoke Rapids shortly thereafter.   

Due to the interconnected management of three dams, hourly releases from Kerr are 

scheduled such that generation revenues from all three facilities are maximized and the weekly 

declaration for Kerr is met (Whisnat, 2009). While releases could theoretically exceed or fall 
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short of the declaration, there is no evidence that this would happen on a regular basis, therefore 

the system is modeled as if releases meet the weekly declaration exactly.   

 The 100-year daily inflow dataset is created using the K-nearest neighbor method 

(Nowak et al., 2010) based on the historic inflow dataset from 1973-2010, which maintains 

accurate multi-site correlations and allows for values outside the historic upper and lower 

bounds.  This inflow enters the system at Kerr and is modeled as moving through the three dam 

system using a water balance approach and the management rules (including the guide curve) 

used by the USACE to make their decisions.  The initial model output is a set of weekly 

declarations that is then translated into an hourly release schedule determined using the 

electricity market model, and the assumptions that all electricity generated is sold into PJM and 

the system is operated to maximize its revenues by scheduling generation to capture peak prices 

(Kern et al., 2012). 

2.2b Electricity Market Model 

The electricity market is modeled to mimic the PJM system in which there are essentially 

three distinct markets: day-ahead, real-time, and ancillary services markets (which offer more 

specialized products related to maintaining grid stability).  In general, electricity is bid into the 

day-ahead market with each bid comprised of the amount of electricity, the time of delivery, and 

price, which is typically the marginal cost of production. The capacity bid by all the generators is 

ranked by bid price, from lowest to highest, with the market price set to the lowest bid price that 

meets projected demand. Capacity not taken in the day-ahead market can then be bid into the 

real-time market where it is used to satisfy demands that deviate from the day-ahead projection 

(Kern et al., 2012).   
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Due to its low marginal costs, the fact that maximum hydropower output in this system is 

always less than total electricity demand, and the designation of these three dams as a capacity 

resource in PJM, hydro bids are effectively always accepted in the day-ahead market, thereby 

precluding them from bidding directly into the real-time market (Kern et al., 2012).  Hydropower 

can still be sold in the real-time market, but only through the sale of reserves or regulation 

service.  Consequently, all of the electricity generated via hydropower in the modeled system is 

assumed to be sold into the day-ahead market.  This assumption is equivalent to the “day-ahead 

only” scenario detailed in Kern et al. (2012).  

A stochastic dataset of hourly day-ahead demand is created using a temperature activated 

autoregressive model (based on historic hourly temperature data from 1973-2010), as 

temperature has a high correlation to energy use and the available temperature dataset is long and 

reliable. Day-ahead prices are derived from the resultant time series of hourly demand using an 

autoregressive model in combination with a discrete Markov chain model that simulates ‘jump’ 

behavior of electricity prices (i.e., spikes in prices that do not necessarily correspond to changes 

in supply and demand).  Figure 2 shows the cumulative density functions of both the historic and 

modeled day-ahead electricity prices.  The model slightly overestimates mid-range prices and 

underrepresents jumps, but on balance, provides a reasonable fit. This is the result of a tradeoff 

between replicating the time series characteristics of historical prices and reproducing their 

statistical moments.  

A key assumption of the autoregressive model used for simulating day-ahead electricity 

prices is that electricity demand (in addition to pseudo-random price jumps) are the only factors 

that influence the market price of electricity. The model does not account for changes in fuel 

costs for natural gas, coal, or oil-fired generators.  
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Historically, day-ahead electricity prices in PJM (and in particular, ‘peak’ electricity 

prices) have exhibited a strong correlation with the spot price of natural gas.  Thus, in a world 

where natural gas prices fluctuate significantly (a situation for which there is historical 

precedent) and day-ahead prices follow suit, the financial impact to hydropower firms may differ 

from our modeled impacts.  The uncertainty around thermal fuel prices could be accounted for 

by altering the day-ahead price model to reflect expectations of fuel prices. However, the 

analysis performed in this study deliberately assumes constant fuel price characteristics in order 

to isolate the financial risk to hydropower producers posed by variable inflows. 

 

Figure 2: Day-ahead price cumulative density functions 
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2.2c Simulation 

Using the stochastic datasets of reservoir inflows and day-ahead energy prices, a 100-

year simulation of the current operations of the dam produced hourly hydropower revenues. One 

hundred years of data should be long enough to accurately represent higher probability events 

(e.g. 75% of mean inflows), which are generally what is being covered with the financial 

instruments discussed hereafter.  If this study was concerned with extreme, low probability 

events, a longer simulation might be necessary.  Figure 3 shows the interactions in the model.   

 

Figure 3: Water flow and electricity model interactions 

2.2d Model Validation 

Along with releases, the hydrologic model tracks reservoir elevation, a proxy for 

reservoir storage.  The modeled elevation is compared to the historic elevation of the reservoir 

:DWHU�)ORZ�0RGHO

.(55

*$6721

52$12.(�5$3,'6

(OHFWULFLW\�0RGHO

32:(5�$1'�5(9(18(6

287)/2:6

675($0�,1)/2:6

32:(5�$1'�5(9(18(6

32:(5�$1'�5(9(18(6

.H\
86$&(�:HHNO\�5HOHDVH�
9ROXPH�'HFODUDWLRQ
+RXUO\�+\GURSRZHU�5HOHDVH�
6FKHGXOH
5HOHDVH�%DVHG�RQ�
0DQDJHPHQW�5XOHV

83675($0�'$06



	
   12	
  

with an inflow dataset from a five-year period from 2005-2010.  Figure 4 shows a representative 

two-year period of this comparison.  In general the model tracks well with the observed elevation 

picking up some small fluctuations.  The model is particularly effective at replicating the historic 

series at low elevations.  A linear regression (Figure 5) has an R2 value for historic and simulated 

daily elevation of 0.79. Given that the model strictly used the USACE release guidelines, this 

confirms that the actual decisions being made follow those rules closely, but not perfectly. While 

the guidelines are typically followed, USACE managers have some ad hoc ability to adjust 

releases on the basis of forecasts and past experience.  This is most evident at the upper extremes 

where the modeled elevation tends to deviate more from the historic elevation.  

 

Figure 4: Reservoir elevation comparison, 1/1/2007-1/1/2009 
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Figure 5: Scatter of historic and simulated elevation (2005-2012) 
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ii) Standardized binary: small contracts with payments either zero or a specified 

amount and varying strike levels.  Hydropower generators could buy any 

combination of contracts to match their desired level of risk mitigation and the 

contracts could be sold by any number of participants (i.e. the risk is not passed 

onto a single party as in the insurance framework, but among many parties who 

have sold the contracts).   

2) Period: period over which the index data is collected.  The “effective date” is the first 

day of the period and the “maturity date” is the last day.  The day the contract is 

signed, which will be prior to the effective date, is the “execution date.” Premiums 

are paid on the execution date and payouts are made on the maturity date. 

3) Index: measurable value that forms the basis for a contract  

4) Index Source: entity responsible for collecting index data and location where data can 

be found. 

5) Strike: index value at which payouts are initiated 

6) Payout Function: a function relating index values to payout magnitude 

7) Max Payout: a specified maximum payout  

8) Premium: price of the contract 

2.3a Finding a Suitable Index 

Index-based financial products have some significant economic advantages over 

traditional property/casualty insurance in that they reduce many of the transaction costs 

associated with making a claim by eliminating the need for a subjective assessment of damages 

(e.g. insurance adjustor).  Agreement on payment terms linked to a well-defined and transparent 

index also reduces the threat of moral hazard as well as the associated risk of insurance fraud 
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(e.g. damage untruthfully or incorrectly attributed to an insured-against cause) (Miranda and 

Vedenov, 2001).  Index-based contracts also allow for simple calculation and rapid processing of 

payouts.  Nonetheless, basis risk, arising from imperfect correlation between the index values 

and the financial risk being insured, can be a major concern for weather indexed financial 

products (Woodard and Garcia, 2008; Brockett et al., 2005).  Basis risk, evaluated in terms of R2 

values, for some studied contracts have been as low as 0.2 while others are considerable higher, 

above 0.9 (high R2 corresponds to low basis risk and vice versa) (Manfredo and Richards, 2005; 

Baethgen et al., 2008; Norton et al., 2010).  

There can also be tradeoffs between the complexity of an index and basis risk.  A simple 

index such as rainfall is easy to specify and measure and can allow for contracts that are broadly 

understood and thus more easily marketable. But simple indices can lead to higher basis risk for 

some parties, and therefore less effective hedging instruments.  The threshold at which the level 

of basis risk discourages participation will depend on the risk preferences of the contract utilizer, 

but less basis risk is preferable.  Reducing basis risk often means developing an index that deals 

with spatial and other unique characteristics of a particular system.  More complex indices may 

have higher management related costs (e.g. cost to develop, cost to measure) with benefits 

accruing to a smaller group of possible contract participants, because decreasing basis risk for 

one entity can mean increased basis risk for others and eventually a reduction in the effectiveness 

of the contract to a broad audience.  

Four criteria should be considered when choosing an index.  The index should: (1) be 

transparent (e.g. publicly available), (2) be reliably measured, (3) not be easily manipulated by 

the contract buyer or seller, and (4) have a high correlation with the target financial risk (i.e. low 

basis risk).  In the case of hydropower, rainfall, reservoir elevation (i.e. storage), and reservoir 
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inflow all would help describe the amount of water available for electricity production.  

Precipitation-based indices serve as the basis for many weather related insurance contracts, but 

seasonal precipitation in the Roanoke basin (1953-2013) is poorly correlated with power 

production (R2 = 0.33) implying that rainfall alone is not likely to be an effective index (USACE, 

2013).  The low correlation is unsurprising given that water levels are dependent on precipitation 

that falls across the entire river basin upstream of the reservoir and there are significant 

uncertainties around how precipitation and resulting runoff translate to inflows to the reservoir.  

While a combination of precipitation measurements over the whole river basin could improve the 

correlation, another index might be simpler and have a stronger correlation. Reservoir inflow 

eliminates the need to know basin wide precipitation or understand how runoff moves to the 

water bodies, and it is a direct measure of water entering the reservoir; therefore, it was the next 

most obvious choice for an index.   

As a result of “run-of-Kerr” operations of the two downstream dams, an index related 

specifically to the management of Kerr is likely to have a high correlation with revenues 

throughout the three dam system.  Inflow to Kerr satisfies criteria 1-3 above, as it is publically 

available, reliable, and relatively free of concerns over manipulation (e.g. it is measured by 

USACE maintained gages). That leaves just the fourth condition, a reasonable level of basis risk. 

Historic (1953-2013) average annual daily inflow to Kerr is highly correlated with 

hydropower generation (R-squared = 0.96), but the financial risks vary significantly on a shorter 

timescale due to electricity demands that are related to temperature fluctuations.  This suggests a 

fifth condition: in addition to having low basis risk, an index should also have a temporal 

resolution appropriate to allow the generator to hedge varying seasonal risks.  The optimal index 

time scale is a function of both basis risk and the temporal nature of the financial risk and often 
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involves making tradeoffs between these two goals.  For the inflow index, reducing the time 

scale from annual to monthly resulted in substantially greater basis risk (R2 = 0.65), but a 

seasonal (3-month) scale reduced that basis risk (R2 = 0.88).  The correlation is further improved 

for 3 of the 4 seasons when each season is separated out (Figure 6) with seasons defined as: 

March-May (Spring, R2 = 0.95), June-August (Summer, R2 = 0.91), September-November (Fall, 

R2 = 0.89), and December-February (Winter, R2 = 0.75).  These correlations are an 

approximation of the basis risk because they relate inflow to power generation rather than 

revenues, as historic revenue data is not available.  The model though allows revenues to be 

simulated along with inflows.  Using the simulated data, correlations between inflow and total 

system revenues (a sum of Kerr, Gaston, and Roanoke Rapids generation revenues) look similar 

to the historic ones: Monthly (R2 = 0.69), Seasonal (R2 = 0.86), and Yearly (R2 = 0.98).  The 

individual season correlations (Figure 7) are: Spring (R2 = 0.96), Summer (R2 = 0.93), Fall (R2 = 

0.96), and Winter (R2 = 0.85). The calculation for the seasonal index (Vi) is as follows: 

 

Vi=[ Inflow t ]/DsDs
t=1                        eq. 1  

  

 where, 

Ds = Days in the Season 

Vi = Value of the index on the last day of the contract period (ft3/s) 

Inflow t  = Recorded inflow to Kerr on day t of the contract period (ft3/s) 
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Figure 6: Comparison of historic Kerr inflow and electricity generation (USACE, 2013) 

 

Figure 7: By season comparison of simulated Kerr inflow and total system revenues (USACE, 2013) 
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A seasonal scale (90-92 days depending on the season) also corresponds with the period 

over which a statistically significant (p=0.05) level of autocorrelation in weekly inflows is 

observed (12.7 weeks or approximately 89 days).  Given this “memory” in the system, the initial 

conditions (i.e. state of the system at the execution date) could impact contract pricing 

significantly, provided that the execution date occurred less than 13 weeks from the effective 

date. Two main initial conditions should be considered, the state of inflows and the elevation of 

the reservoir.  The level of sample autocorrelation observed suggests that if contracts were to be 

written within a 13-week period from the effective date, conditional probabilities related to 

inflows would need to be used to price the contracts. Initial reservoir storage, measured as 

elevation, could also affect the amount of hydropower generation in the future as low storage 

would likely translate to lower releases.  However, the level of statistically significant (p=0.05) 

autocorrelation in reservoir elevation is evident only out to approximately 13 weeks (92 days) as 

well. For the sake of this analysis, all contracts are assumed to have an execution date at least 92 

days from the effective date and no other data is available that would give either the buyer or the 

seller significantly improved information about the probability of payouts.  While in this case 

contracts are offered for four seasonally defined periods, it would also be possible to develop a 

system of rolling contracts that started every day of the year and matured 90 days after their 

effective date.  

2.3b Contract Payout Structures: Index Insurance 

An index insurance contract is typically used to manage downside risk (i.e. financial risk 

related to low revenue periods), by providing payments when a loss, as indicated by an index 

proxy, is incurred. The payout received by the contract buyer is described by: 
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Payout Vi =A*MAX (SL-Vi ,0)  

 

eq. 2 

 

where, 

A = Slope of the payout function ( $
!"!

!
) 

SL
 = Value of index at which payments are initiated or “strike” (ft3/s) 

 

A representation of the payout function for a buyer of such a contract is described in Figure 8.  

Note that the payout function does not include the premium paid by the buyer to the seller, which 

would shift the payout function lower (i.e. such that the payout would be negative for higher 

index values (Vi)).  

 

Figure 8: Basic index insurance payout function 
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The strike and payout function for each contract can be chosen in a variety of ways.  Each 

combination results in a different distribution of payouts, which leads to different contract 

premiums.  One straightforward method of designing the payout function is to use the average 

value of hydropower produced per unit of stream flow during the time period ( $
!"!

!
) as the 

magnitude of A in the payout function (henceforth “value of stream flow method” or VSF).  

2.3c Contract Payout Structure: Standardized Binary  

In this study, the technical details of standardized contracts differ from index insurance 

contracts only in the size of payouts and the form of the payout function.  Alaton et al. (2002) 

discuss in more detail the differences between these two weather risk contract frameworks.  

Specifically this analysis will investigate the performance of standardized binary contracts 

designed for downside risk management.  Such a contract has payouts described by: 

  

Payout Vi =
B, if Vi< SL
0, if Vi≥ SL

  

 

eq. 3 

 

where, 

B = Payment ($) 

 

The payout function for a buyer of such a contract is represented in Figure 9.  Note that it does 

not include the premium paid by the buyer to the seller, which would shift the payout function 

lower by the amount of the premium.  Also note that this figure describes a single discrete 

contract with one strike.  Any hedging strategy involving these binary contracts would involve a 



	
   22	
  

“portfolio” of contracts, which would consist of a range these contracts with different strikes 

(and premiums), albeit all with the same payout.   

 

Figure 9: Standardized binary contract payout function 

2.3d Contract Pricing 

 Pricing insurance or financial products is dependent on many difficult to predict factors 

(e.g. market liquidity, risk preferences of market actors), nonetheless pricing models that attempt 

to estimate market prices exist.  While these representations are uncertain, using one consistent 

pricing methodology across contracts does allow for a relative basis of comparison. 

Weather options are often built around non-tradable indices, and therefore a replicating 

portfolio cannot be built and the “no arbitrage” rationale that underpins many financial risk 

models is not appropriate (Richards et al., 2004).  Instead actuarial pricing practices, consisting 
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of a variety “premium principles,” are often used to handle pricing of weather-based contracts. 

They range from using only the expected value of the contract as the premium (sometimes used 

as a basic, academic form of evaluation for contract performance) to far more complicated 

models. One example of a premium principle that incorporates both the expected value of the 

contract payouts and a factor related to the standard deviation of the risk (Young, 2004) is the 

standard deviation premium principle: 

  

Premium = E X  + β VarX =   xF x  + β Varx 

 

eq. 4 

   

where, 

  X = theoretical payout distribution 

β = a scaling factor determined by the insurer 

VarX = theoretical variance of X 

x   = actual, individual payout 

F x  = probability of x 

Varx  = variance of all actual payouts 

 

This premium principle is attractive because it differentiates the value of contracts with 

the same expected payouts but different payout distributions. For example a contract with a 0.05 

probability of a $100 payment (expected payout of $5) would be priced higher than a contract 

with a 0.50 probability of a $10 payout (expected payout of $5) because the possibility of paying 

out $100 is more costly than the possibility of paying out $10 even though the expected payouts 
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are the same.  For the $100 contract, the seller would have to have more capital on hand at the 

contract’s conclusion and this capital requirement represents an opportunity cost.   

Pricing models have also been proposed that seek to merge actuarial and financial 

methods.  These models are attractive because index insurance (actuarial) and standardized 

binary contracts (financial) can be easily compared within a single pricing method.  One of these 

“merged” models is the Wang transform, which converts any probability distribution function 

(pdf) to “risk neutral” using a distortion equation (which more heavily weights both ends of the 

original pdf) and an assumption about the “market price of risk” (Wang, 2000), such that: 

  

𝐹∗ 𝑥 =   𝛷[𝛷!! 𝐹 𝑥 + 𝛾] 

 

eq. 5 

 

where, 

𝑥  = payout function 

ϕ y  = standard cumulative distribution 

γ  = Sharpe Ratio or “market price of risk” 

F* x  = risk adjusted pdf of payouts 

F x  = pdf of payouts 

  

The Wang Transform is an equilibrium-pricing model that requires some knowledge or 

assumption about what risk is trading for in the market (i.e. what returns are for products with 

similar risk profiles) and the nature of market actors’ risk preferences (e.g. financial institutions 

might have higher risk tolerances than insurance firms).  It also requires an implicit assumption 

of market completeness (i.e. a large number of market actors buying and selling contracts) and 



	
   25	
  

does not account for transaction costs (Tsanakas et al., 2005).  These two assumptions are 

reasonable given the scope of this work, but they are important to keep in mind when 

interpreting results as the prices of the contracts are only estimations.  The Wang transform, 

while imperfect, offers a somewhat more realistic pricing method than simply an expected value 

or basic premium principle method. For more information on pricing, Tsanakas et al (2005) 

provides an in depth discussion of the strengths and weaknesses of different insurance pricing 

models.   

This analysis involves the use of the Wang transform to price both the insurance and 

standardized binary contracts, providing a consistent basis for comparison.  Because similar 

contracts are not publically traded there is no price data that could be used to infer a market price 

of risk (Sharpe Ratio or  𝛾), though some assumption is required in order to benchmark prices 

(Wang, 2002). For this investigation, 𝛾 is assumed to be 0.25, the value Wang (2002) uses when 

pricing weather contracts.  

In order to apply the Wang transform directly as described in equation 5, the distribution 

of payouts must be known.  A minor adjustment to the Wang transform can be made which 

allows the use of a limited dataset as opposed to a full distribution: 

  

F* x = Q[Φ-1 F x +γ] 

 

eq. 6 

 

where, 

Q = Student-t distribution with k degrees-of-freedom 
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Equation 6 allows for the Wang transform to be applied in a burn analysis, a commonly used 

strategy for pricing actuarial risks, particularly weather-based risks (Martin et al., 2007; Jewson 

et al., 2005;).  A burn analysis uses a historical dataset to calculate what past payouts would have 

been with the contract in place and then uses that distribution of payouts to calculate the 

premium. 

 In order to use a burn analysis strategy with the system described here, a sufficiently long 

historical record of inflows, power production, and revenues would need to be available and have 

occurred with identical dam operational procedures and current market rules.  These data are not 

available over a sufficient period for the Roanoke River system due to recent changes in the 

energy market, such that a consistent scenario has only existed since May 2005.  As a result, a 

substantive actuarial analysis requires the generation of synthetic inflow and price time series. 

System modeling, via the procedure described here and in Kern et al. (2012) provides extensive 

time series data for both.  

After applying the transform, the premium is equivalent to the adjusted expectation of 

contract payouts, such that: 

 

Premium(x)  =  E Vi*   =   x*F* x  

 

eq. 7 

 

where, 

Premium(x) = Price of the contract 

F* x  = Risk adjusted pdf of payouts 

  x = Payout(Vi) 
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The premium paid for a contract will be higher than the expected value of payouts (eq. 8a).  This 

is a product of the weightings applied by the Wang transform.  As the variance of a payout 

distribution grows, the contract loading (i.e. portion of the premium that is greater than the 

expected value of payouts, which is also the expected return on investment for the contract 

seller) will increase (eq. 8).   

 

Loading [%]=100*(1-
E Vi*

E Vi
) 

   

 eq. 8 

 

where, 

E Vi = x*F x   = Unadjusted expected value of contract payouts              eq. 8a 

 

For any season and payout function, the revenues for the firm who purchases this contract 

(TotalRevs) is a combination of hydropower generation revenues (HydropowerRevs) for the 

period, any payout received (Payout), and the premium paid (Premium) for the contracts 

(equation 10).  

 

HydropowerRevs  = (Production t   * EnergyPrices t )
Hs

t=1

 
eq. 9 

 

 

TotalRevs Vi  = HydropowerRevs  +  Payout Vi   - Premium(Vi)                                 eq. 10 

 

where, 

Hs  = hours in the season 
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Production   = electricity produced (kWh) 

EnergyPrices t  = day ahead energy prices ($/kWh) 

 

In the case of a standardized contract framework, where many contracts will be purchased to 

mitigate some desired level of risk, the payout and premium value in the TotalRevs equation will 

be the sum of the Premium(Vi) and Payout(Vi) for each contract that makes up the portfolio of 

coverage.  

 The contract cost is not simply the premium, as some of the premium cost will be 

returned in the form of payouts in years when the index is low.  Rather, the true cost of the 

contract for the buyer is the loading (i.e. amount paid in the premium above the expected value 

of payouts) represented as a % of average revenues (eq. 11). 

 

Cost   % =
E Vi* -E Vi

avg(TotalRevs Vi )
 

   

eq. 11 

 

where, 

avg(TotalRevs Vi )  = Average of TotalRevs(Vi) during the relevant time period 

(i.e. March-May) over the entire simulation 
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3. RESULTS 

 Contracts are constructed and evaluated (in terms of minimum expected revenues, 

TotalRevs, over a 100-year simulation) using a reservoir simulation that assumes hydrologic 

stationarity and no changes in electricity demand or market dynamics.  The financial risks vary 

by season, but Spring experiences the most consistent year-to-year variability so these results 

will focus on Spring contracts with the following basic characteristics: 

1.   Type: Index-Insurance or Standardized Binary 

2. Period: March 1 – May 31 (Spring) 

3. Index: average daily inflow to Kerr Reservoir over the contract period in ft3/s 

4. Index Source: USACE Wilmington District Roanoke River Dams Daily Report 

5. Strike: varies from 3000 ft3/s to 14,500 ft3/s 

6. Payout Function: varies in shape and magnitude  

7. Max Payout: none specified  

3.1 Index Insurance 

 An index insurance contract (Contract A) is applied to the simulation, resulting in 

revenues (TotalRevs) shown in Figure 10.  The payments for the same contract are shown in 

Figure 11.  These payments consist of the premium, which is paid every year, and the payouts, 

which only occur in years when they are initiated by the index value.  The missing contract 

parameters for “Contract A” are as follows: 

5. Strike: 8,433 ft3/s (70% of simulated average inflow) 
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6. Payout Function (from eq. 2):  

a. A = 2,255 ( $
ft3 s
) 

b. Payout Vi  = 2,255 ( $
ft3 s
)*MAX( 8,433( ft

3

s
)-Vi ,0) 

 

Figure 10: Revenues (TotalRevs) simulated for 100 years with and without Contract A applied  
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Figure 11: Premiums and payouts made under Contract A  

It can be useful to look at the effect of altering the strike value.  As the strike level 

increases, the minimum revenue level (or “floor”) rises but costs increase (Figure 12). Higher 

strike values will raise the floor, effectively mitigating more of the downside risk, but will cost 

more, though, because the distribution of payouts narrows, risk premiums are lower (as dictated 

by the Wang transform).  Low strikes result in lower minimum revenues and therefore cost less, 

but risk premiums are higher.  Figure 12 shows three contracts with a large step (30% of average 

inflow) between strike values to highlight the movement of the revenue floor in relation to the 

magnitude of Cost.  For these three contracts, as strike increases, the revenue floor ($5.43 million 

without a contract) moves from $11.9 million (Figure 12.A) to $16.5 million (Figure 12.B) to 

$19.3 million (Figure 12.C)  as cost moves from $469,800/year (1.73% of average revenues) to 
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impractical to a hydropower producer, as it pays out most years, not just when revenues are 

particularly low, but, the combination of the payouts and a large premium results in a $19.3 

million revenue floor, which may be an attractive hedging target. It is also clear from Figure 12 

that, as the number of extremely low revenue years are reduced with higher strikes, more years 

fall under the average (albeit much closer to it) and the magnitude of high revenues is tempered. 

Details of additional Spring contracts are included in Table 1.   
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Figure 12: Simulations of three contracts with increasing strike values.  The reduction in average revenues is 

the cost of the contracts (Cost).   
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Table 1: One-year Spring contracts for different strike values. 

Strikea 

(inflow, ft3/s) Premium Loadingb Floorc Costd  

30% (3,614) $45,796 88% $6,216,615 0.08% 

40% (4,819) $290,375 68% $7,827,772 0.43% 

50% (6,024) $725,765 57% $10,003,909 0.97% 

60% (7,228) $1,455,456 48% $11,852,575 1.73% 

70% (8,433) $2,420,183 41% $13,604,292 2.61% 

80% (9,638) $3,513,748 38% $15,227,172 3.54% 

90% (10,842) $4,908,235 33% $16,549,128 4.53% 

100% (12,047) $6,461,666 30% $17,712,141 5.52% 
a strike as a percentage of average inflow (12,047 cfs) (Vi) 
b amount by which the premium exceeds the expected value of payouts as a percent 
of the expected value of payouts (Loading) 
c minimum one year revenue (TotalRevs) in the simulation, the measure of contract 
performance 
d the reduction in average revenues when the contract is applied (i.e. the difference 
between with contract average revenues and without contract average revenues as a 
percent of without contract average revenues) (Cost) 
NOTE: Average generation revenues for the three dams the without any financial 
risk mitigation contract are $27,155,906 

 

Figure 13 shows how the contract hedging goal (minimum revenues) relates to contract 

cost across a range of possible contract strike values for a Spring contract with the same payout 

function as Contract A. The frontier suggests that there is a maximum revenue floor that could be 

achieved ($20.8 million). This possibilities frontier may be useful for decision makers attempting 

develop specific hedging strategies as it presents the range of possible outcomes for a certain 

class of contracts (same payout function, different strikes) as a function of cost.  For example if a 

firm wants to set a revenue floor at $10 million ($4.57 million above the revenues floor without a 

contract), it would cost approximately 1% of average revenues, or $271,560 per year.   
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Figure 13: Contract possibilities frontier for 1-year Spring contracts 

 For comparison, a sampling of Fall, Summer, and Winter contracts are shown in Table 2.  

The VSF method for determining the payout functions is used in all cases. 
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Table 2: One-year contracts for Summer, Winter, and Fall 

Season 
Strikea 

(inflow, ft3/s) Premium Loadingb Floorc Costd 
Summer 60% (3,440) $445,817 57% $11,018,062 0.60% 
  75% (4,301) $1,621,128 38% $13,044,517 1.65% 
  90% (5,161) $3,165,714 32% $14,204,857 2.81% 
Winter 60% (6,585) $795,249 50% $13,127,306 0.99% 

  75% (8,231) $2,219,765 39% $15,750,619 2.29% 
  90% (9,878) $4,181,694 32% $17,163,735 3.76% 

Fall 60% (3,958) $1,108,460 43% $6,597,278 1.23% 
  75% (4,948) $2,389,215 32% $6,567,212 2.16% 
  90% (5,937) $3,919,011 27% $7,386,112 3.10% 
NOTES: 

(1) Season (average revenues | average inflow): Summer ($21,345,000 | 5,734 ft3/s), 
Winter ($26,986,000 | 10,975 ft3/s), Fall ($17,156,000 | 6,597 ft3/s) 

(2) A values for Payout Function, Season (A): Summer (3,723), Winter (2,459), Fall 
(2,601) 

3.1a Impact of Contract Length 

 To this point, all contracts have been priced for one season. Longer contracts (e.g. a 

contract for the next five Springs) would reduce the variability of payouts and reduce the 

contract loading (Figure 14), suggesting that longer-term contracts may often be attractive to 

buyers.  When using the Wang transform pricing method, however, this result assumes that the 

market price of risk (𝛾) remains constant over this longer period.  Uncertainty about the long-

term 𝛾, though, could make this result misleading.  Longer-term contracts may increase the 

market price of risk, as suggested by Wang (2000), possibly leading to a relative increase in 

contract loading.  In this case the increasing 𝛾 values would counteract (to varying degrees 

depending on the season and strike) the benefit from the reduced payout variability likely over a 

longer contract length.   



	
   37	
  

 

Figure 14: Contract loading for multi-year contracts using a 70% strike level, VSF for determining the 

payout function, and constant 𝜸 
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5. Strikes defined in Table 3 
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6. Payout function (from eq. 3):  

a. B=$100 

b. Payout Vi =
$100, if Vi< SL

0, if Vi≥ SL
  

 

Table 3: Standardized binary contract options 

Strike* Expected 
Value Premium Loading Strike* Expected 

Value Premium Loading 

26% $1.00  $2.02  102% 52% $17.00  $24.15  42% 
28% $2.00  $3.71  86% 54% $18.00  $25.37  41% 
30% $3.00  $5.30  77% 56% $19.00  $26.58  40% 
32% $5.00  $8.31  66% 58% $22.00  $30.13  37% 
34% $5.00  $8.31  66% 60% $25.00  $33.61  34% 
36% $6.00  $9.75  62% 62% $25.00  $33.61  34% 
38% $6.00  $9.75  62% 64% $25.00  $33.61  34% 
40% $7.00  $11.16  59% 66% $28.00  $37.00  32% 
42% $10.00  $15.24  52% 68% $29.00  $38.11  31% 
44% $10.00  $15.24  52% 70% $29.00  $38.11  31% 
46% $10.00  $15.24  52% 80% $37.00  $46.75  26% 
48% $12.00  $17.86  49% 90% $45.00  $54.94  22% 
50% $14.00  $20.42  46% 100% $53.00  $62.72  18% 

*Strike as a percentage of average inflow (12,047 cfs)       
 

From the range of standardized binary contracts, an overall payout profile can be 

constructed to match a firm’s desired level of risk coverage.  As an illustration, the strategy in 

Table 4 is designed to closely replicate the coverage exhibited in the index insurance Contract A.  

Each binary contract will provide a $100 payout if the index is below the strike value, therefore 

payouts from contracts with lower strike values are added to payouts from contracts with higher 

strike values to build a portfolio that matches the desired cumulative coverage of the hedging 

firm.  Because in this case contracts are not available below a strike of 26%, the effective payout 

function has a maximum. This is not present in Contract A, but could easily be incorporated into 

a payout function used in an index insurance contract.  Figure 15 displays the effective payout 

function of the strategy in Table 4, as well as Contract A’s payout function.   
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Table 4: Standardized binary contract purchase strategy (portfolio) to mimic a basic index insurance 

contract (Contract A) 

Strikea Premium 

Number of 
Contracts 
Purchased Payout  

Desired 
Cumulative 
Coverageb  

Total 
Premiumsc 

Expected 
Valued 

26% $2.02 5,433 $100 $11,952,400 $10,980 $5,433 
28% $3.71 5,433 $100 $11,409,100 $20,180 $10,866 
30% $5.30 5,433 $100 $10,865,800 $28,820 $16,299 
32% $8.31 5,433 $100 $10,322,500 $45,130 $27,165 
34% $8.31 5,433 $100 $9,779,200 $45,130 $27,160 
36% $9.75 5,433 $100 $9,235,900 $52,960 $32,598 
38% $9.75 5,433 $100 $8,692,600 $52,960 $32,598 
40% $11.16 5,433 $100 $8,149,300 $60,620 $38,031 
42% $15.24 5,433 $100 $7,606,000 $82,790 $54,330 
44% $15.24 5,433 $100 $7,062,800 $82,790 $54,330 
46% $15.24 5,433 $100 $6,519,500 $82,790 $54,330 
48% $17.86 5,433 $100 $5,976,200 $97,030 $65,196 
50% $20.42 5,433 $100 $5,432,900 $110,920 $76,062 
52% $24.15 5,432 $100 $4,889,600 $131,170 $92,344 
54% $25.37 5,433 $100 $4,346,300 $137,820 $97,794 
56% $26.58 5,433 $100 $3,803,000 $144,380 $103,227 
58% $30.13 5,433 $100 $3,259,700 $163,720 $119,526 
60% $33.61 5,433 $100 $2,716,400 $182,580 $135,825 
62% $33.61 5,433 $100 $2,173,200 $182,580 $135,825 
64% $33.61 5,433 $100 $1,629,900 $182,580 $135,825 
66% $37.00 5,433 $100 $1,086,600 $201,000 $152,124 
68% $38.11 5,433 $100 $543,300 $207,060 $157,557 
70% $38.11 0 $100 $0 $0 $0 

Totals 
 

119,525 
  

$2,306,020 $1,624,445 

    
Effective Loadinge  42% 

a strike as a percentage of average inflow (12,047 cfs) 
b chosen to replicate the payout function in Contract A 
c number of contracts multiplied by the individual contract premium 
d the expected value of  contract payouts for the total the number of each purchased 
e percent by which the total premium exceeds the total expected value of payouts 
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Figure 15: Payout functions for Contract A and the portfolio of binary contracts in Table 4  

The standardized binary contract strategy is not all that different from an index insurance 

strategy in its effectiveness if you assume that binary contracts are available at many different 

strikes, but the two strategies have very different implementation requirements.  Index insurance 

requires only the development of an index and the coordination of two parties, whereas 

standardized binary contracts would require a “market maker” (i.e. a party to set up and manage 

trading of the contracts) and enough market participants who would sell the contracts to at least 

cover the size of the hedge desired by the hydropower generator and keep market prices at a 

reasonable level.  
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The standardized binary contracts framework does, however, have some advantages over 

the insurance framework.  Standardized contracts are likely to be far more flexible than 

insurance contracts, making complex or dynamic hedging strategies easier to implement.  

Additionally, the market maker and counterparty (i.e. seller of the contract bought by the hedger 

who is either a speculator or holds oppositely correlated risk) do not need or desire to know 

anything about the specific financial impacts faced by the hedger.  In the standardized binary 

contracts case all parties only need to be concerned about the price of the contract and their own 

risks or future expectations. In the index insurance case, there is usually a bidding process for 

contracts (i.e. a hydropower company would request a certain level of coverage and put it out for 

bid to a handful of insurance firms).  In this case, the insurance companies might want to know 

the specifics of the hedger’s risk in order to capture some of the consumer surplus (i.e. the 

difference between what the hedger is willing to pay and what the insurer is willing to sell the 

contract for), possibly by bidding in higher than they would otherwise be willing to charge.  In 

the standardized binary contracts case, the hedger might have to develop a more complex 

strategy.  As opposed to just buying a single contract, they will have to buy many contracts at 

different premiums to build a portfolio, but a more sophisticated customer might be able to 

achieve a range of risk mitigation for a somewhat lower cost.  

 The framework used for contract design and pricing could be a useful method for 

designing hydrologic risk contracts in other integrated hydro-economic systems.  Modeling this 

system allowed for more nuanced understanding of the interactions between water supply and 

hydropower generation revenues in a system where long-term datasets were not accessible. This 

was critical for selecting an index with low basis risk and then pricing the contracts 

appropriately.  The model, design, and pricing frameworks taken together also allow contracts to 
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be designed and tested in a variety of economic and hydrologic scenarios.  For example, the 

synthetic inflow dataset could be used that describe a climate change scenario or the economic 

model could be altered to incorporate a change in market rules.  This flexibility may be very 

important in a system where future uncertainty about market dynamics or hydrology exists. 
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4. CONCLUSIONS  

 This work uses an integrated hydro-economic model to simulate hydropower operations 

on the Roanoke River and design index insurance and standardized binary contracts for 

mitigating water supply risk to hydropower generators on the river.  Multiple contracts are priced 

and then evaluated in 100-year simulations.  Results suggest that both contract types are capable 

of effectively reducing the water supply risk for hydropower generators, with significant risk 

levels (< 75% of average inflow) reduced at low cost (< 3% of average revenues).  Contracts that 

cover lower probability extreme conditions are even less expensive (approximately 1% of 

average revenues) and have the potential to dramatically increase minimum revenues (by nearly 

100%, from $5.4 million to $10 million, during Spring with a strike of 50% of average 

revenues).  If priced consistently, standardized binary contracts and index insurance provide 

similar levels of coverage per cost, but the standardized binary contracts framework could be 

more flexible in practice and might allow for more sophisticated management strategies.   

 Index-based financial risk management contracts can be useful and successfully reduce 

environmental exposures. While these contracts provide benefit now, they may be more useful in 

the future when hydrologic variability might increase.  Using a modeling approach in contract 

design provides the flexibility to be able to simulate changing market or environmental systems, 

such that uncertainty about future contract costs and benefits can be reduced.  
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